Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system

Identifieur interne : 001685 ( Istex/Corpus ); précédent : 001684; suivant : 001686

Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system

Auteurs : Iván Carrera ; Ram N Anad N ; Isabel Rodríguez-Moldes

Source :

RBID : ISTEX:8C5809EB8E250E905E15B543AFCD2669E441A67C

English descriptors

Abstract

Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/cne.23114

Links to Exploration step

ISTEX:8C5809EB8E250E905E15B543AFCD2669E441A67C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
<author>
<name sortKey="Carrera, Ivan" sort="Carrera, Ivan" uniqKey="Carrera I" first="Iván" last="Carrera">Iván Carrera</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Oldes, Isabel" sort="Rodriguez Oldes, Isabel" uniqKey="Rodriguez Oldes I" first="Isabel" last="Rodríguez-Moldes">Isabel Rodríguez-Moldes</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8C5809EB8E250E905E15B543AFCD2669E441A67C</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/cne.23114</idno>
<idno type="url">https://api.istex.fr/document/8C5809EB8E250E905E15B543AFCD2669E441A67C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001685</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001685</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
<author>
<name sortKey="Carrera, Ivan" sort="Carrera, Ivan" uniqKey="Carrera I" first="Iván" last="Carrera">Iván Carrera</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Oldes, Isabel" sort="Rodriguez Oldes, Isabel" uniqKey="Rodriguez Oldes I" first="Isabel" last="Rodríguez-Moldes">Isabel Rodríguez-Moldes</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11-01">2012-11-01</date>
<biblScope unit="volume">520</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3574">3574</biblScope>
<biblScope unit="page" to="3603">3603</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">8C5809EB8E250E905E15B543AFCD2669E441A67C</idno>
<idno type="DOI">10.1002/cne.23114</idno>
<idno type="ArticleID">CNE23114</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chondrichthyans</term>
<term>brain regionalization</term>
<term>cartilaginous fishes</term>
<term>catecholaminergic innervation</term>
<term>cell migration</term>
<term>neuromeres</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Iván Carrera</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ramón Anadón</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Isabel Rodríguez‐Moldes</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</json:string>
<json:string>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neuromeres</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>brain regionalization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cell migration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>catecholaminergic innervation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cartilaginous fishes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chondrichthyans</value>
</json:item>
</subject>
<articleId>
<json:string>CNE23114</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1837</abstractCharCount>
<pdfWordCount>16117</pdfWordCount>
<pdfCharCount>103415</pdfCharCount>
<pdfPageCount>30</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>520</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>30</total>
<last>3603</last>
<first>3574</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>16</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/cne.23114</json:string>
</doi>
<id>8C5809EB8E250E905E15B543AFCD2669E441A67C</id>
<score>0.017065277</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/8C5809EB8E250E905E15B543AFCD2669E441A67C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/8C5809EB8E250E905E15B543AFCD2669E441A67C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8C5809EB8E250E905E15B543AFCD2669E441A67C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2012 Wiley Periodicals, Inc.</p>
</availability>
<date>2012</date>
</publicationStmt>
<notesStmt>
<note>Spanish Dirección General de Investigación‐FEDER - No. BFU2007‐61154; No. BFU2010‐15816;</note>
<note>Xunta de Galicia - No. PGIDIT07PXIB200102PR; No. INCITE09ENA200048ES;</note>
<note>European Community‐Research Infrastructure Action under the FP7 “Capacities” Specific Programme - No. ASSEMBLE 227799;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
<author xml:id="author-1">
<persName>
<forename type="first">Iván</forename>
<surname>Carrera</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Ramón</forename>
<surname>Anadón</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Isabel</forename>
<surname>Rodríguez‐Moldes</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<affiliation>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11-01"></date>
<biblScope unit="volume">520</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3574">3574</biblScope>
<biblScope unit="page" to="3603">3603</biblScope>
</imprint>
</monogr>
<idno type="istex">8C5809EB8E250E905E15B543AFCD2669E441A67C</idno>
<idno type="DOI">10.1002/cne.23114</idno>
<idno type="ArticleID">CNE23114</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>neuromeres</term>
</item>
<item>
<term>brain regionalization</term>
</item>
<item>
<term>cell migration</term>
</item>
<item>
<term>catecholaminergic innervation</term>
</item>
<item>
<term>cartilaginous fishes</term>
</item>
<item>
<term>Chondrichthyans</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-10-04">Received</change>
<change when="2012-03-23">Registration</change>
<change when="2012-11-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/8C5809EB8E250E905E15B543AFCD2669E441A67C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="160">
<doi origin="wiley" registered="yes">10.1002/cne.v520.16</doi>
<numberingGroup>
<numbering type="journalVolume" number="520">520</numbering>
<numbering type="journalIssue">16</numbering>
</numberingGroup>
<coverDate startDate="2012-11-01">1 November 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="30" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.23114</doi>
<idGroup>
<id type="unit" value="CNE23114"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="30"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-10-04"></event>
<event type="manuscriptRevised" date="2012-03-19"></event>
<event type="manuscriptAccepted" date="2012-03-23"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.6 mode:FullText" date="2012-09-05"></event>
<event type="publishedOnlineAccepted" date="2012-04-02"></event>
<event type="firstOnline" date="2012-09-05"></event>
<event type="publishedOnlineFinalForm" date="2012-09-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">3574</numbering>
<numbering type="pageLast">3603</numbering>
</numberingGroup>
<correspondenceTo>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE23114.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="107"></count>
<count type="wordTotal" number="18469"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish
<i>Scyliorhinus canicula</i>
: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
<title type="short" xml:lang="en">Catecholaminergic system in shark brain</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Iván</givenNames>
<familyName>Carrera</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Ramón</givenNames>
<familyName>Anadón</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Isabel</givenNames>
<familyName>Rodríguez‐Moldes</familyName>
</personName>
<contactDetails>
<email normalForm="isabel.rodriguez-moldes@usc.es">isabel.rodriguez‐moldes@usc.es</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="ES" type="organization">
<unparsedAffiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">neuromeres</keyword>
<keyword xml:id="kwd2">brain regionalization</keyword>
<keyword xml:id="kwd3">cell migration</keyword>
<keyword xml:id="kwd4">catecholaminergic innervation</keyword>
<keyword xml:id="kwd5">cartilaginous fishes</keyword>
<keyword xml:id="kwd6">Chondrichthyans</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Spanish Dirección General de Investigación‐FEDER</fundingAgency>
<fundingNumber>BFU2007‐61154</fundingNumber>
<fundingNumber>BFU2010‐15816</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Xunta de Galicia</fundingAgency>
<fundingNumber>PGIDIT07PXIB200102PR</fundingNumber>
<fundingNumber>INCITE09ENA200048ES</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>European Community‐Research Infrastructure Action under the FP7 “Capacities” Specific Programme</fundingAgency>
<fundingNumber>ASSEMBLE 227799</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark
<i>Scyliorhinus canicula</i>
. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Catecholaminergic system in shark brain</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iván</namePart>
<namePart type="family">Carrera</namePart>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramón</namePart>
<namePart type="family">Anadón</namePart>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Rodríguez‐Moldes</namePart>
<affiliation>Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<affiliation>Departamento de Biología Celular y Ecología, Edificio CIBUS, Universidad de Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-11-01</dateIssued>
<dateCaptured encoding="w3cdtf">2011-10-04</dateCaptured>
<dateValid encoding="w3cdtf">2012-03-23</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">1</extent>
<extent unit="references">107</extent>
<extent unit="words">18469</extent>
</physicalDescription>
<abstract lang="en">Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate‐limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH‐immunoreactive (ir) neuronal populations, 2) the development of TH‐ir innervation, and 3) the organization of TH‐ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH‐ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH‐ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH‐ir prosencephalic populations. The first TH‐ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH‐ir fibers innervated most brain areas, and nearly all TH‐ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. J. Comp. Neurol. 520:3574–3603, 2012. © 2012 Wiley Periodicals, Inc.</abstract>
<note type="funding">Spanish Dirección General de Investigación‐FEDER - No. BFU2007‐61154; No. BFU2010‐15816; </note>
<note type="funding">Xunta de Galicia - No. PGIDIT07PXIB200102PR; No. INCITE09ENA200048ES; </note>
<note type="funding">European Community‐Research Infrastructure Action under the FP7 “Capacities” Specific Programme - No. ASSEMBLE 227799; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>neuromeres</topic>
<topic>brain regionalization</topic>
<topic>cell migration</topic>
<topic>catecholaminergic innervation</topic>
<topic>cartilaginous fishes</topic>
<topic>Chondrichthyans</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>520</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>3574</start>
<end>3603</end>
<total>30</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">8C5809EB8E250E905E15B543AFCD2669E441A67C</identifier>
<identifier type="DOI">10.1002/cne.23114</identifier>
<identifier type="ArticleID">CNE23114</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001685 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001685 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8C5809EB8E250E905E15B543AFCD2669E441A67C
   |texte=   Development of tyrosine hydroxylase‐immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024