Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions

Identifieur interne : 001641 ( Istex/Corpus ); précédent : 001640; suivant : 001642

Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions

Auteurs : Laura Domínguez ; Ruth Morona ; Agustín González ; Nerea Moreno

Source :

RBID : ISTEX:D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901

English descriptors

Abstract

The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/cne.23222

Links to Exploration step

ISTEX:D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
<author>
<name sortKey="Dominguez, Laura" sort="Dominguez, Laura" uniqKey="Dominguez L" first="Laura" last="Domínguez">Laura Domínguez</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morona, Ruth" sort="Morona, Ruth" uniqKey="Morona R" first="Ruth" last="Morona">Ruth Morona</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Agustin" sort="Gonzalez, Agustin" uniqKey="Gonzalez A" first="Agustín" last="González">Agustín González</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moreno, Nerea" sort="Moreno, Nerea" uniqKey="Moreno N" first="Nerea" last="Moreno">Nerea Moreno</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/cne.23222</idno>
<idno type="url">https://api.istex.fr/document/D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001641</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
<author>
<name sortKey="Dominguez, Laura" sort="Dominguez, Laura" uniqKey="Dominguez L" first="Laura" last="Domínguez">Laura Domínguez</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morona, Ruth" sort="Morona, Ruth" uniqKey="Morona R" first="Ruth" last="Morona">Ruth Morona</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Agustin" sort="Gonzalez, Agustin" uniqKey="Gonzalez A" first="Agustín" last="González">Agustín González</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moreno, Nerea" sort="Moreno, Nerea" uniqKey="Moreno N" first="Nerea" last="Moreno">Nerea Moreno</name>
<affiliation>
<mods:affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-03-01">2013-03-01</date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="725">725</biblScope>
<biblScope unit="page" to="759">759</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901</idno>
<idno type="DOI">10.1002/cne.23222</idno>
<idno type="ArticleID">CNE23222</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>amphibians</term>
<term>evolution</term>
<term>forebrain patterning</term>
<term>homology</term>
<term>preoptic area</term>
<term>suprachiasmatic nucleus</term>
<term>supraoptoparaventricular region</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Laura Domínguez</name>
<affiliations>
<json:string>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ruth Morona</name>
<affiliations>
<json:string>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Agustín González</name>
<affiliations>
<json:string>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nerea Moreno</name>
<affiliations>
<json:string>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</json:string>
<json:string>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>preoptic area</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>supraoptoparaventricular region</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>suprachiasmatic nucleus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>homology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>forebrain patterning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>amphibians</value>
</json:item>
</subject>
<articleId>
<json:string>CNE23222</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1881</abstractCharCount>
<pdfWordCount>19103</pdfWordCount>
<pdfCharCount>120784</pdfCharCount>
<pdfPageCount>35</pdfPageCount>
<abstractWordCount>260</abstractWordCount>
</qualityIndicators>
<title>Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>521</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>35</total>
<last>759</last>
<first>725</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>4</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/cne.23222</json:string>
</doi>
<id>D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901</id>
<score>0.0137960315</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2012 Wiley Periodicals, Inc.</p>
</availability>
<date>2013</date>
</publicationStmt>
<notesStmt>
<note>Spanish Ministry of Science and Technology - No. BFU2009‐12315; No. BFU2012‐31687;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
<author xml:id="author-1">
<persName>
<forename type="first">Laura</forename>
<surname>Domínguez</surname>
</persName>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Ruth</forename>
<surname>Morona</surname>
</persName>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Agustín</forename>
<surname>González</surname>
</persName>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Nerea</forename>
<surname>Moreno</surname>
</persName>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
<affiliation>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-03-01"></date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="725">725</biblScope>
<biblScope unit="page" to="759">759</biblScope>
</imprint>
</monogr>
<idno type="istex">D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901</idno>
<idno type="DOI">10.1002/cne.23222</idno>
<idno type="ArticleID">CNE23222</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>The subdivisions of the alar hypothalamus in the developing Xenopus laevis are characterized by their distinct expression patterns of regulatory genes and neuronal markers, together with hodological features. The supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, both subdivided into rostral and caudal portions, form the alar hypothalamus, a component of the secondary prosencephalon. Its boundaries are established caudally with the diencephalic prethalamic eminence and prethalamus, dorsally with the preoptic region, and ventrally with the basal hypothalamus.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>preoptic area</term>
</item>
<item>
<term>supraoptoparaventricular region</term>
</item>
<item>
<term>suprachiasmatic nucleus</term>
</item>
<item>
<term>homology</term>
</item>
<item>
<term>evolution</term>
</item>
<item>
<term>forebrain patterning</term>
</item>
<item>
<term>amphibians</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-05-09">Received</change>
<change when="2012-08-21">Registration</change>
<change when="2013-03-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF COMPARATIVE NEUROLOGY">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/cne.v521.4</doi>
<numberingGroup>
<numbering type="journalVolume" number="521">521</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2013-03-01">1 March 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="20" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.23222</doi>
<idGroup>
<id type="unit" value="CNE23222"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="35"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-05-09"></event>
<event type="manuscriptRevised" date="2012-06-19"></event>
<event type="manuscriptAccepted" date="2012-08-21"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.2.0 mode:FullText" date="2013-02-20"></event>
<event type="publishedOnlineAccepted" date="2012-09-10"></event>
<event type="publishedOnlineFinalForm" date="2013-01-22"></event>
<event type="firstOnline" date="2013-01-22"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">725</numbering>
<numbering type="pageLast">759</numbering>
</numberingGroup>
<correspondenceTo>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE23222.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="16"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="176"></count>
<count type="wordTotal" number="22480"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Characterization of the hypothalamus of
<i>Xenopus laevis</i>
during development. I. The alar regions</title>
<title type="short" xml:lang="en">Alar Hypothalamus in Anurans</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Laura</givenNames>
<familyName>Domínguez</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Ruth</givenNames>
<familyName>Morona</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Agustín</givenNames>
<familyName>González</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Nerea</givenNames>
<familyName>Moreno</familyName>
</personName>
<contactDetails>
<email>nerea@bio.ucm.es</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="ES" type="organization">
<unparsedAffiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">preoptic area</keyword>
<keyword xml:id="kwd2">supraoptoparaventricular region</keyword>
<keyword xml:id="kwd3">suprachiasmatic nucleus</keyword>
<keyword xml:id="kwd4">homology</keyword>
<keyword xml:id="kwd5">evolution</keyword>
<keyword xml:id="kwd6">forebrain patterning</keyword>
<keyword xml:id="kwd7">amphibians</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Spanish Ministry of Science and Technology</fundingAgency>
<fundingNumber>BFU2009‐12315</fundingNumber>
<fundingNumber>BFU2012‐31687</fundingNumber>
</fundingInfo>
<supportingInformation>
<p> Additional Supporting Information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig1"></mediaResource>
<caption>Supplementary Figure 1. Photomicrographs of transverse sections through the main alar hypothalamic subdivisions of Xenopus at different developmental stages. The boundaries are depicted on the basis of the single expression for xDll4 (d) and the combined expressions of Isl1 and Otp (a), xShh and Otp (b,c), and xLhx9 and Otp (e). The boundaries identified are the PO‐SPV (a‐b), SPV‐SC (c), SPV‐PTh (a‐c), SC‐PTh (d), and SPV‐PThE (e). Developmental stages are indicated in each photograph. Scale bars: 50μm (a‐c) and 100μm (d,e).This figure corresponds to the figure 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig2"></mediaResource>
<caption>Supplementary Figure 2. Photomicrographs of sagittal sections through the main alar hypothalamic subdivisions of Xenopus at different developmental stages. The boundaries are depicted on the basis of the single expression for xShh and Nkx2.1 (a,b) and the combined expressions of xDll4 and Otp (c), xDll4 and Nkx2.2 (d), Nkx2.1 and Nkx2.1 (e), xLhx1 and Otp (f), Isl1 and Otp (g), and Trbr1 and Isl1 (h). The boundaries identified are the PO‐SPV (a‐c), SPV‐SC (d,e), SPV‐PTh (c,f), and SPV‐PThE (h). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the boundaries between the different alar hypothalamic subdivisions and the combinatorial code of markers of each region. The yellow lines indicate the limit between two adjacent regions revealed by the different markers. Scale bars: 50μm (a‐f, h) and 200μm (g). This figure corresponds to the figure 4.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig3"></mediaResource>
<caption>Supplementary Figure 3. Photomicrographs of transverse sections through the developing Xenopus PO region showing the combined expressions of xShh and Nkx2.1 (a), Isl1 and Nkx2.1 (b‐d), Nkx2.1 and TH (e), Isl1 and TH (f), Isl1 and GABA (g), Isl1 and Otp (h‐j), xShh and Otp (k), and Nkx2.1 and Nkx2.2 (l). Developmental stages are indicated in each photograph. The arrowhead in g indicates double labeled Isl1 and GABA cells. The photomicrograph j shows a higher magnification of the area shown in i by confocal microscropy to illustrate the limit between the Isl1+ PO and the Otp+ SPV. Scale bars: 50μm (a‐i, k, l) and 25μm (j). This figure corresponds to the figure 5.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig4"></mediaResource>
<caption>Supplementary Figure 4. Photomicrographs of sagittal sections through the developing Xenopus PO region showing the single expressions of Nkx2.1 (a) and xShh (b) and the combined expressions of Isl1 and GABA (c), Isl1 and Nkx2.1 (d,e), Isl1 and Otp (f), and xDll4 and Otp (g). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the combinatorial code of markers present in the PO and its adjacent domains in a lateral view (h) and a transverse section (i). Scale bars: 50μm (a‐e,g) and 200μm (f). This figure corresponds to the figure 6.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig5"></mediaResource>
<caption>Supplementary Figure 5. Photomicrographs of transverse sections through the developing Xenopus SPV region showing the expressions of Otp (a), Nkx2.2 and Otp (b‐f), Nkx2.2 and MST (e,f), Nkx2.2 and SOM (g), xShh and Otp (h), and Nkx2.2 and Nkx2.1 (i). Developmental stages are indicated in each photograph. The arrowhead in a indicates the Otp+ ventricular cells. The arrowheads in c' and d point to the double labeling for Nkx2.2 and Otp in the SPVr portion. Scale bars: 50μm (a‐c, f‐i), 100μm (d) and 200μm (e). This figure corresponds to the figure 7.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig6"></mediaResource>
<caption>Supplementary Figure 6. Photomicrographs of sagittal sections through the developing Xenopus SPV region showing the expressions of Nkx2.2 and Otp (a‐c), Nkx2.2 and MST (d,e), Nkx2.2 and SOM (f,f'), xLhx5 (g), xDll4 and Otp (h), and Otp and Isl1 (i). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the combinatorial code of markers present in the SPV and its adjacent domains in a lateral view (j, j') and a transverse section (k). The yellow line in a indicates the level of the section shown in Fig.7b. The yellow box in f indicates the higher magnification shown in f' and the arrowhead in f' shows the coexpression of Nkx2.2 and SOM in SPVr. Scale bars: 100μm (a), 50μm (b,d‐h), and 250μm (g). This figure corresponds to the figure 8.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig7"></mediaResource>
<caption>Supplementary Figure 7. Photomicrographs of transverse (a‐d, h, m‐o) and sagittal (e‐i, i‐n) sections through the developing Xenopus SC region showing the single expressions of xLhx7 (e), xLhx1 (f) and the combined expressions of xShh and Nkx2.1 (d), xDll4 and Isl1 (a), Isl1 and GABA (b), Isl1 and Nkx2.1 (c), xLhx7 and xDll4 (g), Nkx2.1 and Nkx2.2 (h‐j), xLhx1 and Nkx2.2 (k), xShh and TH (l,m), Nkx2.1 and TH (n) and Nkx2.2 and TH (o). Developmental stages are indicated in each photograph. The arrowhead in b indicates a cell double‐labeled for Isl1 and GABA. Scale bars: 200μm (j), 50μm (a‐i, k‐o). This figure corresponds to the figure 9.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig8"></mediaResource>
<caption>Supplementary Figure 8. Photomicrographs of transverse (a,e‐k) and sagittal (b‐d) sections through the SC territory in late prometamorphic and juvenile Xenopus showing the single expressions of Nkx2.1 (b), Isl1 (b), xLhx1 (g) and xLhx7 (h) and the combined expressions of Isl1 and Nkx2.1 (a,d‐f), Isl1 and Otp (i), Isl1 and GABA (j) and Isl1 and TH (k). Developmental stages are indicated in each photograph. The arrowhead in k indicates a cell double‐labeled for Isl1 and TH. Scale bars: 100 μm. This figure corresponds to the figure 11.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig9"></mediaResource>
<caption>Supplementary Figure 9. Photomicrographs of transverse sections showing the retrogradely labeled cells and anterogradely labeled fibers after BDA injection in the PO of juvenile Xenopus, combined with the marker MST (d,e,g) to corroborate that the tracer was delivered into this particular area. Scale bars: 250 μm (a,e,i), 200 μm (b,d,f,g,h), 100 μm (c,j). This figure corresponds to the figure 13.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig10"></mediaResource>
<caption>Supplementary Figure 10. Photomicrographs of sagittal sections showing anterograde and retrograde labeling after BDA injection in the SPV (a‐h) and the SC (h‐n) of juvenile Xenopus, combined with the markers Otp (a‐c,e‐g, h'‐j), TH (d,n) and Isl1 (h‐j) to corroborate to corroborate that the tracer was delivered into the selected area. The dashed box in h and j indicate the higher magnification shown in h' and j', respectively. The arrowheads point to retrogradely labeled cells, with the exception of the figures e, j' and n that indicate labeled fibers toward the hypophysis. In all photographs, the olfactory bulb is to the right and the spinal cord to the left. Scale bars: 200 μm (a‐e, i, g, h'), 500μm (f, h, i‐n). This figure corresponds to the figure 14.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23222:CNE_23222_sm_SuppFig11"></mediaResource>
<caption>Supplementary Figure 11. Schemes in sagittal view summarizing the main afferent and efferent connections of the PO, SPV and SC regions in Xenopus. This figure corresponds to the figure 16.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of
<i>Xenopus laevis</i>
throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>The subdivisions of the alar hypothalamus in the developing
<i>Xenopus laevis</i>
are characterized by their distinct expression patterns of regulatory genes and neuronal markers, together with hodological features. The supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, both subdivided into rostral and caudal portions, form the alar hypothalamus, a component of the secondary prosencephalon. Its boundaries are established caudally with the diencephalic prethalamic eminence and prethalamus, dorsally with the preoptic region, and ventrally with the basal hypothalamus.</p>
<p>
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" copyright="Wiley Periodicals, Inc." href="urn:x-wiley:00219967:media:CNE23222:gra001"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Alar Hypothalamus in Anurans</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Domínguez</namePart>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruth</namePart>
<namePart type="family">Morona</namePart>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agustín</namePart>
<namePart type="family">González</namePart>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nerea</namePart>
<namePart type="family">Moreno</namePart>
<affiliation>Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain</affiliation>
<affiliation>Dept. of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2013-03-01</dateIssued>
<dateCaptured encoding="w3cdtf">2012-05-09</dateCaptured>
<dateValid encoding="w3cdtf">2012-08-21</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">16</extent>
<extent unit="tables">3</extent>
<extent unit="references">176</extent>
<extent unit="words">22480</extent>
</physicalDescription>
<abstract lang="en">The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors. J. Comp. Neurol. 521:725–759, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<abstract type="graphical" lang="en">The subdivisions of the alar hypothalamus in the developing Xenopus laevis are characterized by their distinct expression patterns of regulatory genes and neuronal markers, together with hodological features. The supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, both subdivided into rostral and caudal portions, form the alar hypothalamus, a component of the secondary prosencephalon. Its boundaries are established caudally with the diencephalic prethalamic eminence and prethalamus, dorsally with the preoptic region, and ventrally with the basal hypothalamus.</abstract>
<note type="funding">Spanish Ministry of Science and Technology - No. BFU2009‐12315; No. BFU2012‐31687; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>preoptic area</topic>
<topic>supraoptoparaventricular region</topic>
<topic>suprachiasmatic nucleus</topic>
<topic>homology</topic>
<topic>evolution</topic>
<topic>forebrain patterning</topic>
<topic>amphibians</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Additional Supporting Information may be found in the online version of this article.Supporting Info Item: Supplementary Figure 1. Photomicrographs of transverse sections through the main alar hypothalamic subdivisions of Xenopus at different developmental stages. The boundaries are depicted on the basis of the single expression for xDll4 (d) and the combined expressions of Isl1 and Otp (a), xShh and Otp (b,c), and xLhx9 and Otp (e). The boundaries identified are the PO‐SPV (a‐b), SPV‐SC (c), SPV‐PTh (a‐c), SC‐PTh (d), and SPV‐PThE (e). Developmental stages are indicated in each photograph. Scale bars: 50μm (a‐c) and 100μm (d,e).This figure corresponds to the figure 3. - Supplementary Figure 2. Photomicrographs of sagittal sections through the main alar hypothalamic subdivisions of Xenopus at different developmental stages. The boundaries are depicted on the basis of the single expression for xShh and Nkx2.1 (a,b) and the combined expressions of xDll4 and Otp (c), xDll4 and Nkx2.2 (d), Nkx2.1 and Nkx2.1 (e), xLhx1 and Otp (f), Isl1 and Otp (g), and Trbr1 and Isl1 (h). The boundaries identified are the PO‐SPV (a‐c), SPV‐SC (d,e), SPV‐PTh (c,f), and SPV‐PThE (h). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the boundaries between the different alar hypothalamic subdivisions and the combinatorial code of markers of each region. The yellow lines indicate the limit between two adjacent regions revealed by the different markers. Scale bars: 50μm (a‐f, h) and 200μm (g). This figure corresponds to the figure 4. - Supplementary Figure 3. Photomicrographs of transverse sections through the developing Xenopus PO region showing the combined expressions of xShh and Nkx2.1 (a), Isl1 and Nkx2.1 (b‐d), Nkx2.1 and TH (e), Isl1 and TH (f), Isl1 and GABA (g), Isl1 and Otp (h‐j), xShh and Otp (k), and Nkx2.1 and Nkx2.2 (l). Developmental stages are indicated in each photograph. The arrowhead in g indicates double labeled Isl1 and GABA cells. The photomicrograph j shows a higher magnification of the area shown in i by confocal microscropy to illustrate the limit between the Isl1+ PO and the Otp+ SPV. Scale bars: 50μm (a‐i, k, l) and 25μm (j). This figure corresponds to the figure 5. - Supplementary Figure 4. Photomicrographs of sagittal sections through the developing Xenopus PO region showing the single expressions of Nkx2.1 (a) and xShh (b) and the combined expressions of Isl1 and GABA (c), Isl1 and Nkx2.1 (d,e), Isl1 and Otp (f), and xDll4 and Otp (g). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the combinatorial code of markers present in the PO and its adjacent domains in a lateral view (h) and a transverse section (i). Scale bars: 50μm (a‐e,g) and 200μm (f). This figure corresponds to the figure 6. - Supplementary Figure 5. Photomicrographs of transverse sections through the developing Xenopus SPV region showing the expressions of Otp (a), Nkx2.2 and Otp (b‐f), Nkx2.2 and MST (e,f), Nkx2.2 and SOM (g), xShh and Otp (h), and Nkx2.2 and Nkx2.1 (i). Developmental stages are indicated in each photograph. The arrowhead in a indicates the Otp+ ventricular cells. The arrowheads in c' and d point to the double labeling for Nkx2.2 and Otp in the SPVr portion. Scale bars: 50μm (a‐c, f‐i), 100μm (d) and 200μm (e). This figure corresponds to the figure 7. - Supplementary Figure 6. Photomicrographs of sagittal sections through the developing Xenopus SPV region showing the expressions of Nkx2.2 and Otp (a‐c), Nkx2.2 and MST (d,e), Nkx2.2 and SOM (f,f'), xLhx5 (g), xDll4 and Otp (h), and Otp and Isl1 (i). Developmental stages are indicated in each photograph. The schematic representation at the bottom summarizes the combinatorial code of markers present in the SPV and its adjacent domains in a lateral view (j, j') and a transverse section (k). The yellow line in a indicates the level of the section shown in Fig.7b. The yellow box in f indicates the higher magnification shown in f' and the arrowhead in f' shows the coexpression of Nkx2.2 and SOM in SPVr. Scale bars: 100μm (a), 50μm (b,d‐h), and 250μm (g). This figure corresponds to the figure 8. - Supplementary Figure 7. Photomicrographs of transverse (a‐d, h, m‐o) and sagittal (e‐i, i‐n) sections through the developing Xenopus SC region showing the single expressions of xLhx7 (e), xLhx1 (f) and the combined expressions of xShh and Nkx2.1 (d), xDll4 and Isl1 (a), Isl1 and GABA (b), Isl1 and Nkx2.1 (c), xLhx7 and xDll4 (g), Nkx2.1 and Nkx2.2 (h‐j), xLhx1 and Nkx2.2 (k), xShh and TH (l,m), Nkx2.1 and TH (n) and Nkx2.2 and TH (o). Developmental stages are indicated in each photograph. The arrowhead in b indicates a cell double‐labeled for Isl1 and GABA. Scale bars: 200μm (j), 50μm (a‐i, k‐o). This figure corresponds to the figure 9. - Supplementary Figure 8. Photomicrographs of transverse (a,e‐k) and sagittal (b‐d) sections through the SC territory in late prometamorphic and juvenile Xenopus showing the single expressions of Nkx2.1 (b), Isl1 (b), xLhx1 (g) and xLhx7 (h) and the combined expressions of Isl1 and Nkx2.1 (a,d‐f), Isl1 and Otp (i), Isl1 and GABA (j) and Isl1 and TH (k). Developmental stages are indicated in each photograph. The arrowhead in k indicates a cell double‐labeled for Isl1 and TH. Scale bars: 100 μm. This figure corresponds to the figure 11. - Supplementary Figure 9. Photomicrographs of transverse sections showing the retrogradely labeled cells and anterogradely labeled fibers after BDA injection in the PO of juvenile Xenopus, combined with the marker MST (d,e,g) to corroborate that the tracer was delivered into this particular area. Scale bars: 250 μm (a,e,i), 200 μm (b,d,f,g,h), 100 μm (c,j). This figure corresponds to the figure 13. - Supplementary Figure 10. Photomicrographs of sagittal sections showing anterograde and retrograde labeling after BDA injection in the SPV (a‐h) and the SC (h‐n) of juvenile Xenopus, combined with the markers Otp (a‐c,e‐g, h'‐j), TH (d,n) and Isl1 (h‐j) to corroborate to corroborate that the tracer was delivered into the selected area. The dashed box in h and j indicate the higher magnification shown in h' and j', respectively. The arrowheads point to retrogradely labeled cells, with the exception of the figures e, j' and n that indicate labeled fibers toward the hypophysis. In all photographs, the olfactory bulb is to the right and the spinal cord to the left. Scale bars: 200 μm (a‐e, i, g, h'), 500μm (f, h, i‐n). This figure corresponds to the figure 14. - Supplementary Figure 11. Schemes in sagittal view summarizing the main afferent and efferent connections of the PO, SPV and SC regions in Xenopus. This figure corresponds to the figure 16. - </note>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>521</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>725</start>
<end>759</end>
<total>35</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901</identifier>
<identifier type="DOI">10.1002/cne.23222</identifier>
<identifier type="ArticleID">CNE23222</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001641 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001641 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D5DCEAEE30AEF21C6D34CA15A4F5BE8752843901
   |texte=   Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024