Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems

Identifieur interne : 001599 ( Istex/Corpus ); précédent : 001598; suivant : 001600

Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems

Auteurs : Ant N Barreiro-Iglesias ; Karolina Sandra Mysiak ; Fátima Adrio ; María Celina Rodicio ; Catherina G. Becker ; Thomas Becker ; Ram N Anad N

Source :

RBID : ISTEX:968F38013B575A4534BB0D7D7FD232C249A99EE6

English descriptors

Abstract

We used a Tg(glyt2:gfp) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP+/GLYT2− cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2+ but GFP−. Most of the GFP+ and GLYT2+ neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2+ populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2+ reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2+ cells were observed in the dorsal and ventral horns. GFP+ fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP+ innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/cne.23179

Links to Exploration step

ISTEX:968F38013B575A4534BB0D7D7FD232C249A99EE6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
<author>
<name sortKey="Barreiro Glesias, Ant N" sort="Barreiro Glesias, Ant N" uniqKey="Barreiro Glesias A" first="Ant N" last="Barreiro-Iglesias">Ant N Barreiro-Iglesias</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mysiak, Karolina Sandra" sort="Mysiak, Karolina Sandra" uniqKey="Mysiak K" first="Karolina Sandra" last="Mysiak">Karolina Sandra Mysiak</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adrio, Fatima" sort="Adrio, Fatima" uniqKey="Adrio F" first="Fátima" last="Adrio">Fátima Adrio</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodicio, Maria Celina" sort="Rodicio, Maria Celina" uniqKey="Rodicio M" first="María Celina" last="Rodicio">María Celina Rodicio</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, Catherina G" sort="Becker, Catherina G" uniqKey="Becker C" first="Catherina G." last="Becker">Catherina G. Becker</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, Thomas" sort="Becker, Thomas" uniqKey="Becker T" first="Thomas" last="Becker">Thomas Becker</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:968F38013B575A4534BB0D7D7FD232C249A99EE6</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/cne.23179</idno>
<idno type="url">https://api.istex.fr/document/968F38013B575A4534BB0D7D7FD232C249A99EE6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001599</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001599</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
<author>
<name sortKey="Barreiro Glesias, Ant N" sort="Barreiro Glesias, Ant N" uniqKey="Barreiro Glesias A" first="Ant N" last="Barreiro-Iglesias">Ant N Barreiro-Iglesias</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mysiak, Karolina Sandra" sort="Mysiak, Karolina Sandra" uniqKey="Mysiak K" first="Karolina Sandra" last="Mysiak">Karolina Sandra Mysiak</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adrio, Fatima" sort="Adrio, Fatima" uniqKey="Adrio F" first="Fátima" last="Adrio">Fátima Adrio</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodicio, Maria Celina" sort="Rodicio, Maria Celina" uniqKey="Rodicio M" first="María Celina" last="Rodicio">María Celina Rodicio</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, Catherina G" sort="Becker, Catherina G" uniqKey="Becker C" first="Catherina G." last="Becker">Catherina G. Becker</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becker, Thomas" sort="Becker, Thomas" uniqKey="Becker T" first="Thomas" last="Becker">Thomas Becker</name>
<affiliation>
<mods:affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-02-01">2013-02-01</date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="389">389</biblScope>
<biblScope unit="page" to="425">425</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">968F38013B575A4534BB0D7D7FD232C249A99EE6</idno>
<idno type="DOI">10.1002/cne.23179</idno>
<idno type="ArticleID">CNE23179</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Danio rerio</term>
<term>GFP transgenic</term>
<term>Mauthner neuron</term>
<term>Teleosts</term>
<term>glycine immunohistochemistry</term>
<term>glycine transporter 2</term>
<term>glycinergic system</term>
<term>in situ hybridization</term>
<term>octavolateral area</term>
<term>pineal</term>
<term>reticular formation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We used a Tg(glyt2:gfp) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP+/GLYT2− cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2+ but GFP−. Most of the GFP+ and GLYT2+ neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2+ populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2+ reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2+ cells were observed in the dorsal and ventral horns. GFP+ fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP+ innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Antón Barreiro‐Iglesias</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</json:string>
<json:string>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Karolina Sandra Mysiak</name>
<affiliations>
<json:string>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fátima Adrio</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>María Celina Rodicio</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Catherina G. Becker</name>
<affiliations>
<json:string>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Thomas Becker</name>
<affiliations>
<json:string>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ramón Anadón</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</json:string>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glycinergic system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>reticular formation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>octavolateral area</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Mauthner neuron</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GFP transgenic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glycine transporter 2</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glycine immunohistochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>in situ hybridization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pineal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Danio rerio</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Teleosts</value>
</json:item>
</subject>
<articleId>
<json:string>CNE23179</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We used a Tg(glyt2:gfp) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP+/GLYT2− cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2+ but GFP−. Most of the GFP+ and GLYT2+ neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2+ populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2+ reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2+ cells were observed in the dorsal and ventral horns. GFP+ fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP+ innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 809.972 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1752</abstractCharCount>
<pdfWordCount>17216</pdfWordCount>
<pdfCharCount>111090</pdfCharCount>
<pdfPageCount>37</pdfPageCount>
<abstractWordCount>257</abstractWordCount>
</qualityIndicators>
<title>Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>521</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>37</total>
<last>425</last>
<first>389</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/cne.23179</json:string>
</doi>
<id>968F38013B575A4534BB0D7D7FD232C249A99EE6</id>
<score>0.013449077</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/968F38013B575A4534BB0D7D7FD232C249A99EE6/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/968F38013B575A4534BB0D7D7FD232C249A99EE6/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/968F38013B575A4534BB0D7D7FD232C249A99EE6/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2012 Wiley Periodicals, Inc.</p>
</availability>
<date>2013</date>
</publicationStmt>
<notesStmt>
<note>Xunta de Galicia - No. INCITE08PXIB200063PR; No. INCITE09ENA200036ES;</note>
<note>Spanish Ministry of Science and Innovation - No. BFU2007‐61056/BFI; No. BFU2010‐17174/BFI;</note>
<note>Biotechnology and Biological Sciences Research Council</note>
<note>Packard Center for ALS Research at Johns Hopkins and the Euan MacDonald Centre for Motor Neurone Disease Research at the University of Edinburgh</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
<author xml:id="author-1">
<persName>
<forename type="first">Antón</forename>
<surname>Barreiro‐Iglesias</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Karolina Sandra</forename>
<surname>Mysiak</surname>
</persName>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Fátima</forename>
<surname>Adrio</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">María Celina</forename>
<surname>Rodicio</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Catherina G.</forename>
<surname>Becker</surname>
</persName>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Thomas</forename>
<surname>Becker</surname>
</persName>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Ramón</forename>
<surname>Anadón</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-02-01"></date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="389">389</biblScope>
<biblScope unit="page" to="425">425</biblScope>
</imprint>
</monogr>
<idno type="istex">968F38013B575A4534BB0D7D7FD232C249A99EE6</idno>
<idno type="DOI">10.1002/cne.23179</idno>
<idno type="ArticleID">CNE23179</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We used a Tg(glyt2:gfp) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP+/GLYT2− cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2+ but GFP−. Most of the GFP+ and GLYT2+ neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2+ populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2+ reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2+ cells were observed in the dorsal and ventral horns. GFP+ fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP+ innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>Glycine is one of the main inhibitory neurotransmitters. We determined the distribution of glycinergic neurons and fibers in the adult zebrafish brain using a transgenic line for GLYT2. We found a large number of glycinergic neurons in the hindbrain but only a few groups in the midbrain and diencephalon. Using neurobiotin transport from the spinal cord, we found three characteristic pairs of reticulospinal glycinergic neurons. Comparison with other vertebrates reveals shared and divergent traits in the evolution of this system.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>glycinergic system</term>
</item>
<item>
<term>reticular formation</term>
</item>
<item>
<term>octavolateral area</term>
</item>
<item>
<term>Mauthner neuron</term>
</item>
<item>
<term>GFP transgenic</term>
</item>
<item>
<term>glycine transporter 2</term>
</item>
<item>
<term>glycine immunohistochemistry</term>
</item>
<item>
<term>in situ hybridization</term>
</item>
<item>
<term>pineal</term>
</item>
<item>
<term>Danio rerio</term>
</item>
<item>
<term>Teleosts</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-07-06">Received</change>
<change when="2012-06-21">Registration</change>
<change when="2013-02-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/968F38013B575A4534BB0D7D7FD232C249A99EE6/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF COMPARATIVE NEUROLOGY">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/cne.v521.2</doi>
<numberingGroup>
<numbering type="journalVolume" number="521">521</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2013-02-01">1 February 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.23179</doi>
<idGroup>
<id type="unit" value="CNE23179"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="37"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-07-06"></event>
<event type="manuscriptRevised" date="2012-01-25"></event>
<event type="manuscriptAccepted" date="2012-06-21"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.9 mode:FullText" date="2012-12-11"></event>
<event type="publishedOnlineAccepted" date="2012-06-27"></event>
<event type="publishedOnlineFinalForm" date="2012-12-06"></event>
<event type="firstOnline" date="2012-12-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">389</numbering>
<numbering type="pageLast">425</numbering>
</numberingGroup>
<correspondenceTo>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE23179.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="15"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="98"></count>
<count type="wordTotal" number="19449"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(
<i>glyt2:Gfp</i>
) adult zebrafish: Relationship to brain–spinal descending systems</title>
<title type="short" xml:lang="en">Glycine Transporter GLYT2 in the Brain of Adult Zebrafish</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Antón</givenNames>
<familyName>Barreiro‐Iglesias</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Karolina Sandra</givenNames>
<familyName>Mysiak</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Fátima</givenNames>
<familyName>Adrio</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>María Celina</givenNames>
<familyName>Rodicio</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Catherina G.</givenNames>
<familyName>Becker</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Thomas</givenNames>
<familyName>Becker</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Ramón</givenNames>
<familyName>Anadón</familyName>
</personName>
<contactDetails>
<email>ramon.anadon@usc.es</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="ES" type="organization">
<unparsedAffiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="GB" type="organization">
<unparsedAffiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">glycinergic system</keyword>
<keyword xml:id="kwd2">reticular formation</keyword>
<keyword xml:id="kwd3">octavolateral area</keyword>
<keyword xml:id="kwd4">Mauthner neuron</keyword>
<keyword xml:id="kwd5">GFP transgenic</keyword>
<keyword xml:id="kwd6">glycine transporter 2</keyword>
<keyword xml:id="kwd7">glycine immunohistochemistry</keyword>
<keyword xml:id="kwd8">in situ hybridization</keyword>
<keyword xml:id="kwd9">pineal</keyword>
<keyword xml:id="kwd10">
<i>Danio rerio</i>
</keyword>
<keyword xml:id="kwd11">Teleosts</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Xunta de Galicia</fundingAgency>
<fundingNumber>INCITE08PXIB200063PR</fundingNumber>
<fundingNumber>INCITE09ENA200036ES</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Spanish Ministry of Science and Innovation</fundingAgency>
<fundingNumber>BFU2007‐61056/BFI</fundingNumber>
<fundingNumber>BFU2010‐17174/BFI</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Biotechnology and Biological Sciences Research Council</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Packard Center for ALS Research at Johns Hopkins and the Euan MacDonald Centre for Motor Neurone Disease Research at the University of Edinburgh</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>We used a Tg(
<i>glyt2:gfp</i>
) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP
<sup>+</sup>
/GLYT2
<sup></sup>
cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2
<sup>+</sup>
but GFP
<sup></sup>
. Most of the GFP
<sup>+</sup>
and GLYT2
<sup>+</sup>
neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2
<sup>+</sup>
populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2
<sup>+</sup>
reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2
<sup>+</sup>
cells were observed in the dorsal and ventral horns. GFP
<sup>+</sup>
fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP
<sup>+</sup>
innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>Glycine is one of the main inhibitory neurotransmitters. We determined the distribution of glycinergic neurons and fibers in the adult zebrafish brain using a transgenic line for GLYT2. We found a large number of glycinergic neurons in the hindbrain but only a few groups in the midbrain and diencephalon. Using neurobiotin transport from the spinal cord, we found three characteristic pairs of reticulospinal glycinergic neurons. Comparison with other vertebrates reveals shared and divergent traits in the evolution of this system.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="Wiley Periodicals, Inc." href="urn:x-wiley:00219967:media:CNE23179:gra001"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Glycine Transporter GLYT2 in the Brain of Adult Zebrafish</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antón</namePart>
<namePart type="family">Barreiro‐Iglesias</namePart>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karolina Sandra</namePart>
<namePart type="family">Mysiak</namePart>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fátima</namePart>
<namePart type="family">Adrio</namePart>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">María Celina</namePart>
<namePart type="family">Rodicio</namePart>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherina G.</namePart>
<namePart type="family">Becker</namePart>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Becker</namePart>
<affiliation>Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramón</namePart>
<namePart type="family">Anadón</namePart>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2013-02-01</dateIssued>
<dateCaptured encoding="w3cdtf">2011-07-06</dateCaptured>
<dateValid encoding="w3cdtf">2012-06-21</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">15</extent>
<extent unit="references">98</extent>
<extent unit="words">19449</extent>
</physicalDescription>
<abstract lang="en">We used a Tg(glyt2:gfp) transgenic zebrafish expressing the green fluorescent protein (GFP) under control of the glycine transporter 2 (GLYT2) regulatory sequences to study for the first time the glycinergic neurons in the brain of an adult teleost. We also performed in situ hybridization using a GLYT2 probe and glycine immunohistochemistry. This study was combined with biocytin tract tracing from the spinal cord to reveal descending glycinergic pathways. A few groups of GFP+/GLYT2− cells were observed in the midbrain and forebrain, including numerous pinealocytes. Conversely, a small nucleus of the midbrain tegmentum was GLYT2+ but GFP−. Most of the GFP+ and GLYT2+ neurons were observed in the rhombencephalon and spinal cord, and a portion of these cells showed double GLYT2/GFP labeling. In the hindbrain, GFP/GLYT2+ populations were observed in the medial octavolateral nucleus; the secondary, magnocellular, and descending octaval nuclei; the viscerosensory lobes; and reticular populations distributed from trigeminal to vagal levels. No glycinergic cells were observed in the cerebellum. Tract tracing revealed three conspicuous pairs of GFP/GLYT2+ reticular neurons projecting to the spinal cord. In the spinal cord, GFP/GLYT2+ cells were observed in the dorsal and ventral horns. GFP+ fibers were observed from the olfactory bulbs to the spinal cord, although their density varied among regions. The Mauthner neurons received very rich GFP+ innervation, mainly around the axon cap. Comparison of the zebrafish glycinergic system with the glycinergic systems of other adult vertebrates reveals shared patterns but also divergent traits in the evolution of this system. J. Comp. Neurol. 521:389–425, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<abstract type="graphical" lang="en">Glycine is one of the main inhibitory neurotransmitters. We determined the distribution of glycinergic neurons and fibers in the adult zebrafish brain using a transgenic line for GLYT2. We found a large number of glycinergic neurons in the hindbrain but only a few groups in the midbrain and diencephalon. Using neurobiotin transport from the spinal cord, we found three characteristic pairs of reticulospinal glycinergic neurons. Comparison with other vertebrates reveals shared and divergent traits in the evolution of this system.</abstract>
<note type="funding">Xunta de Galicia - No. INCITE08PXIB200063PR; No. INCITE09ENA200036ES; </note>
<note type="funding">Spanish Ministry of Science and Innovation - No. BFU2007‐61056/BFI; No. BFU2010‐17174/BFI; </note>
<note type="funding">Biotechnology and Biological Sciences Research Council</note>
<note type="funding">Packard Center for ALS Research at Johns Hopkins and the Euan MacDonald Centre for Motor Neurone Disease Research at the University of Edinburgh</note>
<subject lang="en">
<genre>keywords</genre>
<topic>glycinergic system</topic>
<topic>reticular formation</topic>
<topic>octavolateral area</topic>
<topic>Mauthner neuron</topic>
<topic>GFP transgenic</topic>
<topic>glycine transporter 2</topic>
<topic>glycine immunohistochemistry</topic>
<topic>in situ hybridization</topic>
<topic>pineal</topic>
<topic>Danio rerio</topic>
<topic>Teleosts</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>521</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>389</start>
<end>425</end>
<total>37</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">968F38013B575A4534BB0D7D7FD232C249A99EE6</identifier>
<identifier type="DOI">10.1002/cne.23179</identifier>
<identifier type="ArticleID">CNE23179</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001599 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001599 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:968F38013B575A4534BB0D7D7FD232C249A99EE6
   |texte=   Distribution of glycinergic neurons in the brain of glycine transporter‐2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain–spinal descending systems
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024