Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neuroecology of cartilaginous fishes: the functional implications of brain scaling

Identifieur interne : 001488 ( Istex/Corpus ); précédent : 001487; suivant : 001489

Neuroecology of cartilaginous fishes: the functional implications of brain scaling

Auteurs : K. E. Yopak

Source :

RBID : ISTEX:07E5C57280A17D85D5102B439A9EA895571AB9FE

English descriptors

Abstract

It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.

Url:
DOI: 10.1111/j.1095-8649.2012.03254.x

Links to Exploration step

ISTEX:07E5C57280A17D85D5102B439A9EA895571AB9FE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<author>
<name sortKey="Yopak, K E" sort="Yopak, K E" uniqKey="Yopak K" first="K. E." last="Yopak">K. E. Yopak</name>
<affiliation>
<mods:affiliation>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kara.yopak.uwa@gmail.com</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:07E5C57280A17D85D5102B439A9EA895571AB9FE</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1095-8649.2012.03254.x</idno>
<idno type="url">https://api.istex.fr/document/07E5C57280A17D85D5102B439A9EA895571AB9FE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001488</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001488</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<author>
<name sortKey="Yopak, K E" sort="Yopak, K E" uniqKey="Yopak K" first="K. E." last="Yopak">K. E. Yopak</name>
<affiliation>
<mods:affiliation>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kara.yopak.uwa@gmail.com</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fish Biology</title>
<idno type="ISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-04">2012-04</date>
<biblScope unit="volume">80</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1968">1968</biblScope>
<biblScope unit="page" to="2023">2023</biblScope>
</imprint>
<idno type="ISSN">0022-1112</idno>
</series>
<idno type="istex">07E5C57280A17D85D5102B439A9EA895571AB9FE</idno>
<idno type="DOI">10.1111/j.1095-8649.2012.03254.x</idno>
<idno type="ArticleID">JFB3254</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1112</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>allometry</term>
<term>chondrichthyan</term>
<term>comparative brain morphology</term>
<term>evolution</term>
<term>neuroanatomy</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>K. E. Yopak</name>
<affiliations>
<json:string>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</json:string>
<json:string>E-mail: kara.yopak.uwa@gmail.com</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>allometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chondrichthyan</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>comparative brain morphology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neuroanatomy</value>
</json:item>
</subject>
<articleId>
<json:string>JFB3254</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>487.559 x 702.992 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>2587</abstractCharCount>
<pdfWordCount>25326</pdfWordCount>
<pdfCharCount>158553</pdfCharCount>
<pdfPageCount>56</pdfPageCount>
<abstractWordCount>372</abstractWordCount>
</qualityIndicators>
<title>Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>80</volume>
<publisherId>
<json:string>JFB</json:string>
</publisherId>
<pages>
<total>56</total>
<last>2023</last>
<first>1968</first>
</pages>
<issn>
<json:string>0022-1112</json:string>
</issn>
<issue>5</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1095-8649</json:string>
</eissn>
<title>Journal of Fish Biology</title>
<doi>
<json:string>10.1111/(ISSN)1095-8649</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>marine & freshwater biology</json:string>
<json:string>fisheries</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>fisheries</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1095-8649.2012.03254.x</json:string>
</doi>
<id>07E5C57280A17D85D5102B439A9EA895571AB9FE</id>
<score>0.01000076</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/07E5C57280A17D85D5102B439A9EA895571AB9FE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/07E5C57280A17D85D5102B439A9EA895571AB9FE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/07E5C57280A17D85D5102B439A9EA895571AB9FE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<author xml:id="author-1">
<persName>
<forename type="first">K. E.</forename>
<surname>Yopak</surname>
</persName>
<email>kara.yopak.uwa@gmail.com</email>
<affiliation>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Fish Biology</title>
<idno type="pISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<idno type="DOI">10.1111/(ISSN)1095-8649</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-04"></date>
<biblScope unit="volume">80</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1968">1968</biblScope>
<biblScope unit="page" to="2023">2023</biblScope>
</imprint>
</monogr>
<idno type="istex">07E5C57280A17D85D5102B439A9EA895571AB9FE</idno>
<idno type="DOI">10.1111/j.1095-8649.2012.03254.x</idno>
<idno type="ArticleID">JFB3254</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>allometry</term>
</item>
<item>
<term>chondrichthyan</term>
</item>
<item>
<term>comparative brain morphology</term>
</item>
<item>
<term>evolution</term>
</item>
<item>
<term>neuroanatomy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-04">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-12-13">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-02-8">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/07E5C57280A17D85D5102B439A9EA895571AB9FE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1095-8649</doi>
<issn type="print">0022-1112</issn>
<issn type="electronic">1095-8649</issn>
<idGroup>
<id type="product" value="JFB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF FISH BIOLOGY">Journal of Fish Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04105">
<doi origin="wiley">10.1111/jfb.2012.80.issue-5</doi>
<titleGroup>
<title type="specialIssueTitle">The Current Status of Elasmobranchs: Biology, Fisheries and Conservation</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="80">80</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2012-04">April 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="49" status="forIssue">
<doi origin="wiley">10.1111/j.1095-8649.2012.03254.x</doi>
<idGroup>
<id type="unit" value="JFB3254"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="56"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">EDITORIAL</title>
</titleGroup>
<copyright>© 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.3 standalone mode:FullText" date="2012-04-12"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-03-27"></event>
<event type="firstOnline" date="2012-03-27"></event>
<event type="publishedOnlineFinalForm" date="2012-04-12"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1968">1968</numbering>
<numbering type="pageLast" number="2023">2023</numbering>
</numberingGroup>
<correspondenceTo>Tel.: +61 8 6488 4509; email:
<email>kara.yopak.uwa@gmail.com</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JFB.JFB3254.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="374"></count>
</countGroup>
<titleGroup>
<title type="main">Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
<title type="shortAuthors">K. E. YOPAK</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>K. E.</givenNames>
<familyName>Yopak</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="AU">
<unparsedAffiliation>
<i>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</i>
</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">allometry</keyword>
<keyword xml:id="k2">chondrichthyan</keyword>
<keyword xml:id="k3">comparative brain morphology</keyword>
<keyword xml:id="k4">evolution</keyword>
<keyword xml:id="k5">neuroanatomy</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization,
<i>n</i>
= 151) and interspecific variation in brain organization (
<i>n</i>
= 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on
<i>c.</i>
16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Neuroecology of cartilaginous fishes: the functional implications of brain scaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">K. E.</namePart>
<namePart type="family">Yopak</namePart>
<affiliation>University of Western Australia, School of Animal Biology and the UWA Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia</affiliation>
<affiliation>E-mail: kara.yopak.uwa@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-04</dateIssued>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="tables">2</extent>
<extent unit="references">374</extent>
</physicalDescription>
<abstract lang="en">It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well‐developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef‐associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep‐sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain organization, with far less on subsections of major brain areas that receive distinct sensory input. The interspecific variability in brain organization further stresses the importance of performing functional studies on a greater range of species. Only an expansive data set, comprised of species that span a variety of habitats and taxonomic groups, with widely disparate behavioural repertoires, combined with further functional analyses, will help shed light on the extent to which chondrichthyan brains have evolved as a consequence of behaviour, habitat and lifestyle in addition to phylogeny.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>allometry</topic>
<topic>chondrichthyan</topic>
<topic>comparative brain morphology</topic>
<topic>evolution</topic>
<topic>neuroanatomy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fish Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0022-1112</identifier>
<identifier type="eISSN">1095-8649</identifier>
<identifier type="DOI">10.1111/(ISSN)1095-8649</identifier>
<identifier type="PublisherID">JFB</identifier>
<part>
<date>2012</date>
<detail type="title">
<title>The Current Status of Elasmobranchs: Biology, Fisheries and Conservation</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>80</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1968</start>
<end>2023</end>
<total>56</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">07E5C57280A17D85D5102B439A9EA895571AB9FE</identifier>
<identifier type="DOI">10.1111/j.1095-8649.2012.03254.x</identifier>
<identifier type="ArticleID">JFB3254</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:07E5C57280A17D85D5102B439A9EA895571AB9FE
   |texte=   Neuroecology of cartilaginous fishes: the functional implications of brain scaling
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024