Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology

Identifieur interne : 001466 ( Istex/Corpus ); précédent : 001465; suivant : 001467

Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology

Auteurs : Gloria Arratia ; Hans-Peter Schultze ; Jorge Casciotta

Source :

RBID : ISTEX:12B2D92A90ABBC638C415FD954D1E183BA6F7219

English descriptors

Abstract

A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.

Url:
DOI: 10.1002/jmor.1062

Links to Exploration step

ISTEX:12B2D92A90ABBC638C415FD954D1E183BA6F7219

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
<author>
<name sortKey="Arratia, Gloria" sort="Arratia, Gloria" uniqKey="Arratia G" first="Gloria" last="Arratia">Gloria Arratia</name>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultze, Hans Eter" sort="Schultze, Hans Eter" uniqKey="Schultze H" first="Hans-Peter" last="Schultze">Hans-Peter Schultze</name>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casciotta, Jorge" sort="Casciotta, Jorge" uniqKey="Casciotta J" first="Jorge" last="Casciotta">Jorge Casciotta</name>
<affiliation>
<mods:affiliation>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:12B2D92A90ABBC638C415FD954D1E183BA6F7219</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1002/jmor.1062</idno>
<idno type="url">https://api.istex.fr/document/12B2D92A90ABBC638C415FD954D1E183BA6F7219/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001466</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001466</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
<author>
<name sortKey="Arratia, Gloria" sort="Arratia, Gloria" uniqKey="Arratia G" first="Gloria" last="Arratia">Gloria Arratia</name>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultze, Hans Eter" sort="Schultze, Hans Eter" uniqKey="Schultze H" first="Hans-Peter" last="Schultze">Hans-Peter Schultze</name>
<affiliation>
<mods:affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casciotta, Jorge" sort="Casciotta, Jorge" uniqKey="Casciotta J" first="Jorge" last="Casciotta">Jorge Casciotta</name>
<affiliation>
<mods:affiliation>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Morphology</title>
<title level="j" type="abbrev">J. Morphol.</title>
<idno type="ISSN">0362-2525</idno>
<idno type="eISSN">1097-4687</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2001-11">2001-11</date>
<biblScope unit="volume">250</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="101">101</biblScope>
<biblScope unit="page" to="172">172</biblScope>
</imprint>
<idno type="ISSN">0362-2525</idno>
</series>
<idno type="istex">12B2D92A90ABBC638C415FD954D1E183BA6F7219</idno>
<idno type="DOI">10.1002/jmor.1062</idno>
<idno type="ArticleID">JMOR1062</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0362-2525</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>homology</term>
<term>ontogeny</term>
<term>radials</term>
<term>supraneurals</term>
<term>vertebrae</term>
<term>‘supraneurals’</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Gloria Arratia</name>
<affiliations>
<json:string>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</json:string>
<json:string>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hans‐Peter Schultze</name>
<affiliations>
<json:string>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jorge Casciotta</name>
<affiliations>
<json:string>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vertebrae</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>‘supraneurals’</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>supraneurals</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>radials</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ontogeny</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>homology</value>
</json:item>
</subject>
<articleId>
<json:string>JMOR1062</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>3703</abstractCharCount>
<pdfWordCount>30776</pdfWordCount>
<pdfCharCount>196891</pdfCharCount>
<pdfPageCount>72</pdfPageCount>
<abstractWordCount>532</abstractWordCount>
</qualityIndicators>
<title>Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>250</volume>
<publisherId>
<json:string>JMOR</json:string>
</publisherId>
<pages>
<total>72</total>
<last>172</last>
<first>101</first>
</pages>
<issn>
<json:string>0362-2525</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-4687</json:string>
</eissn>
<title>Journal of Morphology</title>
<doi>
<json:string>10.1002/(ISSN)1097-4687</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>anatomy & morphology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>anatomy & morphology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1002/jmor.1062</json:string>
</doi>
<id>12B2D92A90ABBC638C415FD954D1E183BA6F7219</id>
<score>0.023493633</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/12B2D92A90ABBC638C415FD954D1E183BA6F7219/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/12B2D92A90ABBC638C415FD954D1E183BA6F7219/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/12B2D92A90ABBC638C415FD954D1E183BA6F7219/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>Copyright © 2001 Wiley‐Liss, Inc.</p>
</availability>
<date>2001</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
<author xml:id="author-1">
<persName>
<forename type="first">Gloria</forename>
<surname>Arratia</surname>
</persName>
<affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</affiliation>
<affiliation>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Hans‐Peter</forename>
<surname>Schultze</surname>
</persName>
<affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jorge</forename>
<surname>Casciotta</surname>
</persName>
<affiliation>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Morphology</title>
<title level="j" type="abbrev">J. Morphol.</title>
<idno type="pISSN">0362-2525</idno>
<idno type="eISSN">1097-4687</idno>
<idno type="DOI">10.1002/(ISSN)1097-4687</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2001-11"></date>
<biblScope unit="volume">250</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="101">101</biblScope>
<biblScope unit="page" to="172">172</biblScope>
</imprint>
</monogr>
<idno type="istex">12B2D92A90ABBC638C415FD954D1E183BA6F7219</idno>
<idno type="DOI">10.1002/jmor.1062</idno>
<idno type="ArticleID">JMOR1062</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>vertebrae</term>
</item>
<item>
<term>‘supraneurals’</term>
</item>
<item>
<term>supraneurals</term>
</item>
<item>
<term>radials</term>
</item>
<item>
<term>ontogeny</term>
</item>
<item>
<term>homology</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/12B2D92A90ABBC638C415FD954D1E183BA6F7219/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4687</doi>
<issn type="print">0362-2525</issn>
<issn type="electronic">1097-4687</issn>
<idGroup>
<id type="product" value="JMOR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF MORPHOLOGY">Journal of Morphology</title>
<title type="short">J. Morphol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/jmor.v250:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="250">250</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2001-11">November 2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="10" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jmor.1062</doi>
<idGroup>
<id type="unit" value="JMOR1062"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="72"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2001 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="firstOnline" date="2001-10-16"></event>
<event type="publishedOnlineFinalForm" date="2001-10-16"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">101</numbering>
<numbering type="pageLast">172</numbering>
</numberingGroup>
<correspondenceTo>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JMOR.JMOR1062.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="49"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="182"></count>
<count type="wordTotal" number="35405"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
<title type="short" xml:lang="en">Vertebral Column in Dipnoans</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Gloria</givenNames>
<familyName>Arratia</familyName>
</personName>
<contactDetails>
<email normalForm="gloria.arratia@rz.hu-berlin.de">gloria.arratia@rz.hu‐berlin.de</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Hans‐Peter</givenNames>
<familyName>Schultze</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Jorge</givenNames>
<familyName>Casciotta</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="DE" type="organization">
<unparsedAffiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="AR" type="organization">
<unparsedAffiliation>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">vertebrae</keyword>
<keyword xml:id="kwd2">‘supraneurals’</keyword>
<keyword xml:id="kwd3">supraneurals</keyword>
<keyword xml:id="kwd4">radials</keyword>
<keyword xml:id="kwd5">ontogeny</keyword>
<keyword xml:id="kwd6">homology</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †
<i>Leptolepis coryphaenoides</i>
. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Vertebral Column in Dipnoans</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gloria</namePart>
<namePart type="family">Arratia</namePart>
<affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</affiliation>
<affiliation>Museum für Naturkunde, Invalienstr. 43, D‐10115 Berlin, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hans‐Peter</namePart>
<namePart type="family">Schultze</namePart>
<affiliation>Museum für Naturkunde, Humboldt Universität, Berlin, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Casciotta</namePart>
<affiliation>Museo de La Plata, Departamento Científico de Zoología, La Plata, Argentina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2001-11</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">49</extent>
<extent unit="references">182</extent>
<extent unit="words">35405</extent>
</physicalDescription>
<abstract lang="en">A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above †Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, ‘supraneural’, and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal ‘supraneural.’ Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle ‘supraneural,’ and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or ‘supraneural.’ They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>vertebrae</topic>
<topic>‘supraneurals’</topic>
<topic>supraneurals</topic>
<topic>radials</topic>
<topic>ontogeny</topic>
<topic>homology</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Morphology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Morphol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0362-2525</identifier>
<identifier type="eISSN">1097-4687</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4687</identifier>
<identifier type="PublisherID">JMOR</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>250</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>101</start>
<end>172</end>
<total>72</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">12B2D92A90ABBC638C415FD954D1E183BA6F7219</identifier>
<identifier type="DOI">10.1002/jmor.1062</identifier>
<identifier type="ArticleID">JMOR1062</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2001 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Inc.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001466 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001466 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:12B2D92A90ABBC638C415FD954D1E183BA6F7219
   |texte=   Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024