Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)

Identifieur interne : 001365 ( Istex/Corpus ); précédent : 001364; suivant : 001366

Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)

Auteurs : José Ngel Gayoso ; Antonio Castro ; Ram N Anad N ; María Jesús Manso

Source :

RBID : ISTEX:0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE

English descriptors

Abstract

Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gαolf protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/cne.22518

Links to Exploration step

ISTEX:0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
<author>
<name sortKey="Gayoso, Jose Ngel" sort="Gayoso, Jose Ngel" uniqKey="Gayoso J" first="José Ngel" last="Gayoso">José Ngel Gayoso</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Castro, Antonio" sort="Castro, Antonio" uniqKey="Castro A" first="Antonio" last="Castro">Antonio Castro</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manso, Maria Jesus" sort="Manso, Maria Jesus" uniqKey="Manso M" first="María Jesús" last="Manso">María Jesús Manso</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/cne.22518</idno>
<idno type="url">https://api.istex.fr/document/0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001365</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
<author>
<name sortKey="Gayoso, Jose Ngel" sort="Gayoso, Jose Ngel" uniqKey="Gayoso J" first="José Ngel" last="Gayoso">José Ngel Gayoso</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Castro, Antonio" sort="Castro, Antonio" uniqKey="Castro A" first="Antonio" last="Castro">Antonio Castro</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anad N, Ram N" sort="Anad N, Ram N" uniqKey="Anad N R" first="Ram N" last="Anad N">Ram N Anad N</name>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manso, Maria Jesus" sort="Manso, Maria Jesus" uniqKey="Manso M" first="María Jesús" last="Manso">María Jesús Manso</name>
<affiliation>
<mods:affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-02-01">2011-02-01</date>
<biblScope unit="volume">519</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="247">247</biblScope>
<biblScope unit="page" to="276">276</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE</idno>
<idno type="DOI">10.1002/cne.22518</idno>
<idno type="ArticleID">CNE22518</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Golf protein</term>
<term>S100</term>
<term>calcium‐binding proteins</term>
<term>calretinin</term>
<term>glomerular fields</term>
<term>olfactory receptor neurons</term>
<term>primary extrabulbar projections</term>
<term>teleosts (Cyprinids)</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gαolf protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>José Ángel Gayoso</name>
<affiliations>
<json:string>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Antonio Castro</name>
<affiliations>
<json:string>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ramón Anadón</name>
<affiliations>
<json:string>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</json:string>
<json:string>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>María Jesús Manso</name>
<affiliations>
<json:string>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>olfactory receptor neurons</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glomerular fields</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>primary extrabulbar projections</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>calcium‐binding proteins</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>calretinin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>S100</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Golf protein</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>teleosts (Cyprinids)</value>
</json:item>
</subject>
<articleId>
<json:string>CNE22518</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gαolf protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1908</abstractCharCount>
<pdfWordCount>15570</pdfWordCount>
<pdfCharCount>100106</pdfCharCount>
<pdfPageCount>30</pdfPageCount>
<abstractWordCount>257</abstractWordCount>
</qualityIndicators>
<title>Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>519</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>30</total>
<last>276</last>
<first>247</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/cne.22518</json:string>
</doi>
<id>0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE</id>
<score>0.024081863</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2010 Wiley‐Liss, Inc.</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note type="content">*The first two authors contributed equally to this work.</note>
<note>Xunta de Galicia - No. PGIDIT07PXIB103159PR;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
<author xml:id="author-1">
<persName>
<forename type="first">José Ángel</forename>
<surname>Gayoso</surname>
</persName>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Antonio</forename>
<surname>Castro</surname>
</persName>
<note type="biography">The first two authors contributed equally to this work.</note>
<affiliation>The first two authors contributed equally to this work.</affiliation>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Ramón</forename>
<surname>Anadón</surname>
</persName>
<affiliation>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">María Jesús</forename>
<surname>Manso</surname>
</persName>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-02-01"></date>
<biblScope unit="volume">519</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="247">247</biblScope>
<biblScope unit="page" to="276">276</biblScope>
</imprint>
</monogr>
<idno type="istex">0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE</idno>
<idno type="DOI">10.1002/cne.22518</idno>
<idno type="ArticleID">CNE22518</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gαolf protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>olfactory receptor neurons</term>
</item>
<item>
<term>glomerular fields</term>
</item>
<item>
<term>primary extrabulbar projections</term>
</item>
<item>
<term>calcium‐binding proteins</term>
</item>
<item>
<term>calretinin</term>
</item>
<item>
<term>S100</term>
</item>
<item>
<term>Golf protein</term>
</item>
<item>
<term>teleosts (Cyprinids)</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-06-17">Received</change>
<change when="2010-09-22">Registration</change>
<change when="2011-02-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/cne.v519.2</doi>
<numberingGroup>
<numbering type="journalVolume" number="519">519</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2011-02-01">1 February 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="60" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.22518</doi>
<idGroup>
<id type="unit" value="CNE22518"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="30"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-06-17"></event>
<event type="manuscriptRevised" date="2010-08-17"></event>
<event type="manuscriptAccepted" date="2010-09-22"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4 mode:FullText" date="2010-12-15"></event>
<event type="publishedOnlineAccepted" date="2010-10-28"></event>
<event type="firstOnline" date="2010-12-16"></event>
<event type="publishedOnlineFinalForm" date="2010-12-16"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">247</numbering>
<numbering type="pageLast">276</numbering>
</numberingGroup>
<correspondenceTo>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE22518.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="97"></count>
<count type="wordTotal" number="18042"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (
<i>Danio rerio</i>
)
<link href="#fn1"></link>
</title>
<title type="short" xml:lang="en">Olfactory Neuron Projections in Zebrafish</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>José Ángel</givenNames>
<familyName>Gayoso</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" noteRef="#fn1">
<personName>
<givenNames>Antonio</givenNames>
<familyName>Castro</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2" corresponding="yes">
<personName>
<givenNames>Ramón</givenNames>
<familyName>Anadón</familyName>
</personName>
<contactDetails>
<email>ramon.anadon@usc.es</email>
</contactDetails>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>María Jesús</givenNames>
<familyName>Manso</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="ES" type="organization">
<unparsedAffiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="ES" type="organization">
<unparsedAffiliation>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">olfactory receptor neurons</keyword>
<keyword xml:id="kwd2">glomerular fields</keyword>
<keyword xml:id="kwd3">primary extrabulbar projections</keyword>
<keyword xml:id="kwd4">calcium‐binding proteins</keyword>
<keyword xml:id="kwd5">calretinin</keyword>
<keyword xml:id="kwd6">S100</keyword>
<keyword xml:id="kwd7">Golf protein</keyword>
<keyword xml:id="kwd8">teleosts (Cyprinids)</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Xunta de Galicia</fundingAgency>
<fundingNumber>PGIDIT07PXIB103159PR</fundingNumber>
</fundingInfo>
<supportingInformation>
<p> Additional supporting information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig1"></mediaResource>
<caption>Supporting Figure 1: Photographs of ventrally dissected (A‐C) and transversely sectioned (D) heads to show the appearance of the brain‐olfactory organ block (A), and the size and position of the minute DiI crystals (thin arrows) applied to the ventromedial glomerular field (B), caudoventral glomerular field (C) and field comprising the EBOP projections (D). The dashed line in D indicated the approximate limit between dorsal and ventral telencephalic areas. The outlined arrow (D) points to the ventral part of the telencephalic ventricle. Photographs (B‐D) were obtained with a stereomicroscope a few hours after crystal application to better appreciate the application point. For abbreviations, see list. Scale bar, 200 μm.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig2"></mediaResource>
<caption>Supporting Figure 2: Transverse sections of the left olfactory rosette showing the distribution of S100‐ir (red channel) and CR‐ir (green channel) olfactory receptors from rostral (A) to caudal (L). Arrowheads point to conspicuous bundles of olfactory fibers coursing to form the olfactory nerve (ON in L). Note that CR‐ir neurons are located in lamellae closer to the basis of the rosette than S100‐ir cells. Medial is at the right. Scale bars, 100 μm.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig3"></mediaResource>
<caption>Supporting Figure 3: A, Stereoscopic confocal view of a whole‐mount immunostained olfactory rosette showing the distribution of CR‐ir cells in lamellae. B, Stereoscopic confocal ventral view of a whole‐mount immunostained olfactory bulb showing the distribution of CR‐ir glomerular fields. For the axes: M, medial; R, rostral; D, dorsal. Scale bars, 100 μm.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig4"></mediaResource>
<caption>Supporting Figure 4: Confocal photomicrographs of CR/S100 double stained sections of the olfactory bulb, as in figure 6A‐D, showing in the left column the merged channels, in the center column the green channel (calretinin immunoreactivity) and in the right column the magenta channel (S100 immunoreactivity). Same abbreviations and symbols than in Figure 6A‐D. Scale bars, 50 μm.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig5"></mediaResource>
<caption>Supporting Figure 5: Confocal photomicrographs of CR/S100 double stained sections of the olfactory bulb, as in figure 6E‐H, showing in the left column the merged channels, in the center column the green channel (calretinin immunoreactivity) and in the right column the magenta channel (S100 immunoreactivity). Same abbreviations and symbols than in Figure 6D‐H. Scale bars, 50 μm.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne22518:CNE_22518_sm_SuppFig6"></mediaResource>
<caption>Supporting Figure 6: Confocal photomicrographs of KLH‐like stained sections of the ventral telencephalon arranged sequentially from retrobulbar levels (A) to the anterior commissure (L). A section from each three sections has been included. Thin arrows point to terminal fields in Vv; Outlined arrows point to terminal fields in caudal Vd‐Vs. Circled arrows point to the main tract. Double arrows point to the telencephalic ventricle. For abbreviations, see list. Scale bar, 100 μm, applies to all photomicrographs.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gα
<sub>olf</sub>
protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>The first two authors contributed equally to this work.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Olfactory Neuron Projections in Zebrafish</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)</title>
</titleInfo>
<name type="personal">
<namePart type="given">José Ángel</namePart>
<namePart type="family">Gayoso</namePart>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Castro</namePart>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
<description>The first two authors contributed equally to this work.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramón</namePart>
<namePart type="family">Anadón</namePart>
<affiliation>Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782‐Santiago de Compostela, Spain</affiliation>
<affiliation>Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, Campus Sur, University of Santiago de Compostela. 15782‐Santiago de Compostela, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">María Jesús</namePart>
<namePart type="family">Manso</namePart>
<affiliation>Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071‐A Coruña, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-02-01</dateIssued>
<dateCaptured encoding="w3cdtf">2009-06-17</dateCaptured>
<dateValid encoding="w3cdtf">2010-09-22</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">12</extent>
<extent unit="tables">1</extent>
<extent unit="references">97</extent>
<extent unit="words">18042</extent>
</physicalDescription>
<abstract lang="en">Immunohistochemical methods were used to characterize the expression of two calcium‐binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gαolf protein, and CR immunoelectron microscopy, indicated that most CR‐immunoreactive (ir) cells were ciliary neurons. Differential S100‐ and CR‐ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100‐ir or CR‐ir glomerular regions led to labeling of cells mostly similar to S100‐ir and CR‐ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)‐stained numerous sensory cells in the olfactory rosette, including cells that were CR‐ and S100‐negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract‐tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH‐like immunohistochemistry. Comparison between KLH‐like‐ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH‐like‐ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed. J. Comp. Neurol. 519:247‐276, 2011. © 2010 Wiley‐Liss, Inc.</abstract>
<note type="content">*The first two authors contributed equally to this work.</note>
<note type="funding">Xunta de Galicia - No. PGIDIT07PXIB103159PR; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>olfactory receptor neurons</topic>
<topic>glomerular fields</topic>
<topic>primary extrabulbar projections</topic>
<topic>calcium‐binding proteins</topic>
<topic>calretinin</topic>
<topic>S100</topic>
<topic>Golf protein</topic>
<topic>teleosts (Cyprinids)</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Additional supporting information may be found in the online version of this article.Supporting Info Item: Supporting Figure 1: Photographs of ventrally dissected (A‐C) and transversely sectioned (D) heads to show the appearance of the brain‐olfactory organ block (A), and the size and position of the minute DiI crystals (thin arrows) applied to the ventromedial glomerular field (B), caudoventral glomerular field (C) and field comprising the EBOP projections (D). The dashed line in D indicated the approximate limit between dorsal and ventral telencephalic areas. The outlined arrow (D) points to the ventral part of the telencephalic ventricle. Photographs (B‐D) were obtained with a stereomicroscope a few hours after crystal application to better appreciate the application point. For abbreviations, see list. Scale bar, 200 μm. - Supporting Figure 2: Transverse sections of the left olfactory rosette showing the distribution of S100‐ir (red channel) and CR‐ir (green channel) olfactory receptors from rostral (A) to caudal (L). Arrowheads point to conspicuous bundles of olfactory fibers coursing to form the olfactory nerve (ON in L). Note that CR‐ir neurons are located in lamellae closer to the basis of the rosette than S100‐ir cells. Medial is at the right. Scale bars, 100 μm. - Supporting Figure 3: A, Stereoscopic confocal view of a whole‐mount immunostained olfactory rosette showing the distribution of CR‐ir cells in lamellae. B, Stereoscopic confocal ventral view of a whole‐mount immunostained olfactory bulb showing the distribution of CR‐ir glomerular fields. For the axes: M, medial; R, rostral; D, dorsal. Scale bars, 100 μm. - Supporting Figure 4: Confocal photomicrographs of CR/S100 double stained sections of the olfactory bulb, as in figure 6A‐D, showing in the left column the merged channels, in the center column the green channel (calretinin immunoreactivity) and in the right column the magenta channel (S100 immunoreactivity). Same abbreviations and symbols than in Figure 6A‐D. Scale bars, 50 μm. - Supporting Figure 5: Confocal photomicrographs of CR/S100 double stained sections of the olfactory bulb, as in figure 6E‐H, showing in the left column the merged channels, in the center column the green channel (calretinin immunoreactivity) and in the right column the magenta channel (S100 immunoreactivity). Same abbreviations and symbols than in Figure 6D‐H. Scale bars, 50 μm. - Supporting Figure 6: Confocal photomicrographs of KLH‐like stained sections of the ventral telencephalon arranged sequentially from retrobulbar levels (A) to the anterior commissure (L). A section from each three sections has been included. Thin arrows point to terminal fields in Vv; Outlined arrows point to terminal fields in caudal Vd‐Vs. Circled arrows point to the main tract. Double arrows point to the telencephalic ventricle. For abbreviations, see list. Scale bar, 100 μm, applies to all photomicrographs. - </note>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>519</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>247</start>
<end>276</end>
<total>30</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE</identifier>
<identifier type="DOI">10.1002/cne.22518</identifier>
<identifier type="ArticleID">CNE22518</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0DE223178ED1AB7039CC2D72BD7CA44A6421C5EE
   |texte=   Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio)
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024