Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Periventricular morphology in the diencephalon of antarctic notothenioid teleosts

Identifieur interne : 001024 ( Istex/Corpus ); précédent : 001023; suivant : 001025

Periventricular morphology in the diencephalon of antarctic notothenioid teleosts

Auteurs : Michael J. Lannoo ; Joseph T. Eastman

Source :

RBID : ISTEX:F0A2599E6449414CBA37A30D8F3D4ECB6D948A61

English descriptors

Abstract

We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0. 54; P = 0. 006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/cne.903610108

Links to Exploration step

ISTEX:F0A2599E6449414CBA37A30D8F3D4ECB6D948A61

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
<author>
<name sortKey="Lannoo, Michael J" sort="Lannoo, Michael J" uniqKey="Lannoo M" first="Michael J." last="Lannoo">Michael J. Lannoo</name>
<affiliation>
<mods:affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eastman, Joseph T" sort="Eastman, Joseph T" uniqKey="Eastman J" first="Joseph T." last="Eastman">Joseph T. Eastman</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F0A2599E6449414CBA37A30D8F3D4ECB6D948A61</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1002/cne.903610108</idno>
<idno type="url">https://api.istex.fr/document/F0A2599E6449414CBA37A30D8F3D4ECB6D948A61/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001024</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
<author>
<name sortKey="Lannoo, Michael J" sort="Lannoo, Michael J" uniqKey="Lannoo M" first="Michael J." last="Lannoo">Michael J. Lannoo</name>
<affiliation>
<mods:affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eastman, Joseph T" sort="Eastman, Joseph T" uniqKey="Eastman J" first="Joseph T." last="Eastman">Joseph T. Eastman</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley‐Liss, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1995-10-09">1995-10-09</date>
<biblScope unit="volume">361</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="95">95</biblScope>
<biblScope unit="page" to="107">107</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">F0A2599E6449414CBA37A30D8F3D4ECB6D948A61</idno>
<idno type="DOI">10.1002/cne.903610108</idno>
<idno type="ArticleID">CNE903610108</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CSF‐contacting neurons</term>
<term>freezing resistance adaptations</term>
<term>nucleus lateralis tuberis</term>
<term>nucleus preopticus</term>
<term>third ventricle</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0. 54; P = 0. 006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Michael J. Lannoo</name>
<affiliations>
<json:string>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</json:string>
<json:string>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joseph T. Eastman</name>
<affiliations>
<json:string>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>third ventricle</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CSF‐contacting neurons</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nucleus preopticus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nucleus lateralis tuberis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>freezing resistance adaptations</value>
</json:item>
</subject>
<articleId>
<json:string>CNE903610108</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0. 54; P = 0. 006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.544</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1441</abstractCharCount>
<pdfWordCount>6991</pdfWordCount>
<pdfCharCount>47032</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>212</abstractWordCount>
</qualityIndicators>
<title>Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>361</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>13</total>
<last>107</last>
<first>95</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1002/cne.903610108</json:string>
</doi>
<id>F0A2599E6449414CBA37A30D8F3D4ECB6D948A61</id>
<score>0.020335237</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/F0A2599E6449414CBA37A30D8F3D4ECB6D948A61/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/F0A2599E6449414CBA37A30D8F3D4ECB6D948A61/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F0A2599E6449414CBA37A30D8F3D4ECB6D948A61/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley‐Liss, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>Copyright © 1995 Wiley‐Liss, Inc.</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
<author xml:id="author-1">
<persName>
<forename type="first">Michael J.</forename>
<surname>Lannoo</surname>
</persName>
<affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</affiliation>
<affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Joseph T.</forename>
<surname>Eastman</surname>
</persName>
<affiliation>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley‐Liss, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1995-10-09"></date>
<biblScope unit="volume">361</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="95">95</biblScope>
<biblScope unit="page" to="107">107</biblScope>
</imprint>
</monogr>
<idno type="istex">F0A2599E6449414CBA37A30D8F3D4ECB6D948A61</idno>
<idno type="DOI">10.1002/cne.903610108</idno>
<idno type="ArticleID">CNE903610108</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0. 54; P = 0. 006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>third ventricle</term>
</item>
<item>
<term>CSF‐contacting neurons</term>
</item>
<item>
<term>nucleus preopticus</term>
</item>
<item>
<term>nucleus lateralis tuberis</term>
</item>
<item>
<term>freezing resistance adaptations</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1995-03-10">Registration</change>
<change when="1995-10-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/F0A2599E6449414CBA37A30D8F3D4ECB6D948A61/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley‐Liss, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/cne.v361:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="361">361</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="1995-10-09">9 October 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="8" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.903610108</doi>
<idGroup>
<id type="unit" value="CNE903610108"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1995 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptAccepted" date="1995-03-10"></event>
<event type="firstOnline" date="2004-10-10"></event>
<event type="publishedOnlineFinalForm" date="2004-10-10"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">95</numbering>
<numbering type="pageLast">107</numbering>
</numberingGroup>
<correspondenceTo>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE903610108.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="66"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
<title type="short" xml:lang="en">NOTOTHENIOID PERIVENTRICULAR MORPHOLOGY</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Michael J.</givenNames>
<familyName>Lannoo</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Joseph T.</givenNames>
<familyName>Eastman</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">third ventricle</keyword>
<keyword xml:id="kwd2">CSF‐contacting neurons</keyword>
<keyword xml:id="kwd3">nucleus preopticus</keyword>
<keyword xml:id="kwd4">nucleus lateralis tuberis</keyword>
<keyword xml:id="kwd5">freezing resistance adaptations</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology,
<i>Trematomus bernacchii</i>
, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r
<sup>2</sup>
= 0.48;
<i>P</i>
= 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r
<sup>2</sup>
= 0. 54;
<i>P</i>
= 0. 006) and the lateralis tuberis (r
<sup>2</sup>
= 0.40;
<i>P</i>
= 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>NOTOTHENIOID PERIVENTRICULAR MORPHOLOGY</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Periventricular morphology in the diencephalon of antarctic notothenioid teleosts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael J.</namePart>
<namePart type="family">Lannoo</namePart>
<affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, Indiana 47306</affiliation>
<affiliation>The Muncie Center for Medical Education, Indiana University School of Medicine, and Department of Physiology and Health Sciences, Ball State University, Muncie, IN 47306</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph T.</namePart>
<namePart type="family">Eastman</namePart>
<affiliation>Department of Biological Sciences and College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley‐Liss, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1995-10-09</dateIssued>
<dateValid encoding="w3cdtf">1995-03-10</dateValid>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="tables">1</extent>
<extent unit="references">66</extent>
</physicalDescription>
<abstract lang="en">We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0. 54; P = 0. 006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid‐contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions. © 1995 Wiley‐Liss, Inc.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>third ventricle</topic>
<topic>CSF‐contacting neurons</topic>
<topic>nucleus preopticus</topic>
<topic>nucleus lateralis tuberis</topic>
<topic>freezing resistance adaptations</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>361</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>95</start>
<end>107</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F0A2599E6449414CBA37A30D8F3D4ECB6D948A61</identifier>
<identifier type="DOI">10.1002/cne.903610108</identifier>
<identifier type="ArticleID">CNE903610108</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1995 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley‐Liss, Inc.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F0A2599E6449414CBA37A30D8F3D4ECB6D948A61
   |texte=   Periventricular morphology in the diencephalon of antarctic notothenioid teleosts
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024