Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymorphic crystalline structure of fish otoliths

Identifieur interne : 000E79 ( Istex/Corpus ); précédent : 000E78; suivant : 000E80

Polymorphic crystalline structure of fish otoliths

Auteurs : R. W. Gauldie

Source :

RBID : ISTEX:EF0EF4A69917F567CF0C054740ECF217405E6A52

Abstract

Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota, and Gonorhynchus gonorhynchus contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of Allocyttus niger, Hoplostethus altlanticus, and Pagrus major contained sequences of calcite‐like crystals. The surface of the vateritic otolith of Acipenser brevirostrum is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of Macruronus novaezelandiae showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jmor.1052180102

Links to Exploration step

ISTEX:EF0EF4A69917F567CF0C054740ECF217405E6A52

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymorphic crystalline structure of fish otoliths</title>
<author>
<name sortKey="Gauldie, R W" sort="Gauldie, R W" uniqKey="Gauldie R" first="R. W." last="Gauldie">R. W. Gauldie</name>
<affiliation>
<mods:affiliation>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EF0EF4A69917F567CF0C054740ECF217405E6A52</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1002/jmor.1052180102</idno>
<idno type="url">https://api.istex.fr/document/EF0EF4A69917F567CF0C054740ECF217405E6A52/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E79</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polymorphic crystalline structure of fish otoliths</title>
<author>
<name sortKey="Gauldie, R W" sort="Gauldie, R W" uniqKey="Gauldie R" first="R. W." last="Gauldie">R. W. Gauldie</name>
<affiliation>
<mods:affiliation>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Morphology</title>
<title level="j" type="abbrev">J. Morphol.</title>
<idno type="ISSN">0362-2525</idno>
<idno type="eISSN">1097-4687</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1993-10">1993-10</date>
<biblScope unit="volume">218</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
<idno type="ISSN">0362-2525</idno>
</series>
<idno type="istex">EF0EF4A69917F567CF0C054740ECF217405E6A52</idno>
<idno type="DOI">10.1002/jmor.1052180102</idno>
<idno type="ArticleID">JMOR1052180102</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0362-2525</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota, and Gonorhynchus gonorhynchus contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of Allocyttus niger, Hoplostethus altlanticus, and Pagrus major contained sequences of calcite‐like crystals. The surface of the vateritic otolith of Acipenser brevirostrum is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of Macruronus novaezelandiae showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>R. W. Gauldie</name>
<affiliations>
<json:string>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JMOR1052180102</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota, and Gonorhynchus gonorhynchus contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of Allocyttus niger, Hoplostethus altlanticus, and Pagrus major contained sequences of calcite‐like crystals. The surface of the vateritic otolith of Acipenser brevirostrum is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of Macruronus novaezelandiae showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.28</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>486 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1474</abstractCharCount>
<pdfWordCount>11428</pdfWordCount>
<pdfCharCount>72743</pdfCharCount>
<pdfPageCount>28</pdfPageCount>
<abstractWordCount>190</abstractWordCount>
</qualityIndicators>
<title>Polymorphic crystalline structure of fish otoliths</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>218</volume>
<publisherId>
<json:string>JMOR</json:string>
</publisherId>
<pages>
<total>28</total>
<last>28</last>
<first>1</first>
</pages>
<issn>
<json:string>0362-2525</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-4687</json:string>
</eissn>
<title>Journal of Morphology</title>
<doi>
<json:string>10.1002/(ISSN)1097-4687</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>anatomy & morphology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>anatomy & morphology</json:string>
</scienceMetrix>
</categories>
<publicationDate>1993</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1002/jmor.1052180102</json:string>
</doi>
<id>EF0EF4A69917F567CF0C054740ECF217405E6A52</id>
<score>0.23622635</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/EF0EF4A69917F567CF0C054740ECF217405E6A52/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/EF0EF4A69917F567CF0C054740ECF217405E6A52/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/EF0EF4A69917F567CF0C054740ECF217405E6A52/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Polymorphic crystalline structure of fish otoliths</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 1993 Wiley‐Liss, Inc.</p>
</availability>
<date>1993</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Polymorphic crystalline structure of fish otoliths</title>
<author xml:id="author-1">
<persName>
<forename type="first">R. W.</forename>
<surname>Gauldie</surname>
</persName>
<affiliation>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Morphology</title>
<title level="j" type="abbrev">J. Morphol.</title>
<idno type="pISSN">0362-2525</idno>
<idno type="eISSN">1097-4687</idno>
<idno type="DOI">10.1002/(ISSN)1097-4687</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1993-10"></date>
<biblScope unit="volume">218</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
</monogr>
<idno type="istex">EF0EF4A69917F567CF0C054740ECF217405E6A52</idno>
<idno type="DOI">10.1002/jmor.1052180102</idno>
<idno type="ArticleID">JMOR1052180102</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota, and Gonorhynchus gonorhynchus contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of Allocyttus niger, Hoplostethus altlanticus, and Pagrus major contained sequences of calcite‐like crystals. The surface of the vateritic otolith of Acipenser brevirostrum is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of Macruronus novaezelandiae showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1993-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/EF0EF4A69917F567CF0C054740ECF217405E6A52/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4687</doi>
<issn type="print">0362-2525</issn>
<issn type="electronic">1097-4687</issn>
<idGroup>
<id type="product" value="JMOR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF MORPHOLOGY">Journal of Morphology</title>
<title type="short">J. Morphol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/jmor.v218:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="218">218</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="1993-10">October 1993</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jmor.1052180102</doi>
<idGroup>
<id type="unit" value="JMOR1052180102"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="28"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1993 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="firstOnline" date="2005-02-06"></event>
<event type="publishedOnlineFinalForm" date="2005-02-06"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1</numbering>
<numbering type="pageLast">28</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JMOR.JMOR1052180102.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="16"></count>
<count type="referenceTotal" number="85"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Polymorphic crystalline structure of fish otoliths</title>
<title type="short" xml:lang="en">FISH OTOLITHS' POLYMORPHIC CRYSTALLINE STRUCTURE</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>R. W.</givenNames>
<familyName>Gauldie</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of
<i>Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota</i>
, and
<i>Gonorhynchus gonorhynchus</i>
contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of
<i>Allocyttus niger, Hoplostethus altlanticus</i>
, and
<i>Pagrus major</i>
contained sequences of calcite‐like crystals. The surface of the vateritic otolith of
<i>Acipenser brevirostrum</i>
is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of
<i>Macruronus novaezelandiae</i>
showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Polymorphic crystalline structure of fish otoliths</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FISH OTOLITHS' POLYMORPHIC CRYSTALLINE STRUCTURE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Polymorphic crystalline structure of fish otoliths</title>
</titleInfo>
<name type="personal">
<namePart type="given">R. W.</namePart>
<namePart type="family">Gauldie</namePart>
<affiliation>Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1993-10</dateIssued>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">16</extent>
<extent unit="references">85</extent>
</physicalDescription>
<abstract lang="en">Although most otoliths of teleost fishes contain aragonite, a detailed survey of the otoliths of serveral species confirms that other crystalline forms of calcium carbonate occur. Otoliths of Hoplostethus atlanticus, Pagrus major, Macruronus novaezelandiae, Merluccius australis, Congiopodus coriaceus, Kathetostoma giganteum, Argentina elongata, Rhomobosolea tapirina, Neophrynichthys latus, Coelorinchus aspercephalus, Paranothothenia microlepidota, and Gonorhynchus gonorhynchus contained the aragonite, calcite, and vaterite morphs of calcium carbonate in varying proportions. Aragonitic otoliths of Allocyttus niger, Hoplostethus altlanticus, and Pagrus major contained sequences of calcite‐like crystals. The surface of the vateritic otolith of Acipenser brevirostrum is shown in detail. Three classes of information are stored in the crystalline structure of the otolith: shape conservation, coexisting crystal morphs, and consecutive changes in crystal morph. Analysis of this crystalline information supports the hypothesis of control of growth of the otolith by proteins from the sensory epithelium or macula. Protein variation involved may be genetic in origin, or non‐genetic arising from “stuttering” of the translation process. Proteins extracted from vateric and aragonitic morphs of the otolith of Macruronus novaezelandiae showed differences in infared absorption spectra that were consistent with two different amino acid sequences. © 1993 Wiley‐Liss, Inc.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Morphology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Morphol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0362-2525</identifier>
<identifier type="eISSN">1097-4687</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4687</identifier>
<identifier type="PublisherID">JMOR</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>218</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>28</end>
<total>28</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">EF0EF4A69917F567CF0C054740ECF217405E6A52</identifier>
<identifier type="DOI">10.1002/jmor.1052180102</identifier>
<identifier type="ArticleID">JMOR1052180102</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1993 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EF0EF4A69917F567CF0C054740ECF217405E6A52
   |texte=   Polymorphic crystalline structure of fish otoliths
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024