Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Markov‐type Evolution of Materials into a Polar State

Identifieur interne : 000C60 ( Istex/Corpus ); précédent : 000C59; suivant : 000C61

Markov‐type Evolution of Materials into a Polar State

Auteurs : Jürg Hulliger

Source :

RBID : ISTEX:0300C5FE235795986FD18BEBB034D4001FBAD9D9

English descriptors

Abstract

Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties.

Url:
DOI: 10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S

Links to Exploration step

ISTEX:0300C5FE235795986FD18BEBB034D4001FBAD9D9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Markov‐type Evolution of Materials into a Polar State</title>
<author>
<name sortKey="Hulliger, Jurg" sort="Hulliger, Jurg" uniqKey="Hulliger J" first="Jürg" last="Hulliger">Jürg Hulliger</name>
<affiliation>
<mods:affiliation>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: juerg.hulliger@iac.unibe.ch</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0300C5FE235795986FD18BEBB034D4001FBAD9D9</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S</idno>
<idno type="url">https://api.istex.fr/document/0300C5FE235795986FD18BEBB034D4001FBAD9D9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C60</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000C60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Markov‐type Evolution of Materials into a Polar State</title>
<author>
<name sortKey="Hulliger, Jurg" sort="Hulliger, Jurg" uniqKey="Hulliger J" first="Jürg" last="Hulliger">Jürg Hulliger</name>
<affiliation>
<mods:affiliation>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: juerg.hulliger@iac.unibe.ch</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemistry – A European Journal</title>
<title level="j" type="abbrev">Chemistry – A European Journal</title>
<idno type="ISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2002-10-18">2002-10-18</date>
<biblScope unit="volume">8</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="4578">4578</biblScope>
<biblScope unit="page" to="4586">4586</biblScope>
</imprint>
<idno type="ISSN">0947-6539</idno>
</series>
<idno type="istex">0300C5FE235795986FD18BEBB034D4001FBAD9D9</idno>
<idno type="DOI">10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S</idno>
<idno type="ArticleID">CHEM4578</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0947-6539</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Markov chain</term>
<term>connective tissues</term>
<term>crystal growth</term>
<term>polar properties</term>
<term>self‐assembly</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Jürg Hulliger Prof. Dr.</name>
<affiliations>
<json:string>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</json:string>
<json:string>E-mail: juerg.hulliger@iac.unibe.ch</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>connective tissues</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>crystal growth</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Markov chain</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>polar properties</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>self‐assembly</value>
</json:item>
</subject>
<articleId>
<json:string>CHEM4578</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties.</abstract>
<qualityIndicators>
<score>6.896</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1126</abstractCharCount>
<pdfWordCount>6247</pdfWordCount>
<pdfCharCount>36771</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>158</abstractWordCount>
</qualityIndicators>
<title>Markov‐type Evolution of Materials into a Polar State</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>8</volume>
<publisherId>
<json:string>CHEM</json:string>
</publisherId>
<pages>
<total>9</total>
<last>4586</last>
<first>4578</first>
</pages>
<issn>
<json:string>0947-6539</json:string>
</issn>
<issue>20</issue>
<subject>
<json:item>
<value>Concept</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1521-3765</json:string>
</eissn>
<title>Chemistry – A European Journal</title>
<doi>
<json:string>10.1002/(ISSN)1521-3765</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>chemistry, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>general chemistry</json:string>
</scienceMetrix>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1002/1521-3765(20021018)8:20>4578::AID-CHEM4578>3.0.CO;2-S</json:string>
</doi>
<id>0300C5FE235795986FD18BEBB034D4001FBAD9D9</id>
<score>0.07040227</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0300C5FE235795986FD18BEBB034D4001FBAD9D9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0300C5FE235795986FD18BEBB034D4001FBAD9D9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0300C5FE235795986FD18BEBB034D4001FBAD9D9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Markov‐type Evolution of Materials into a Polar State</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<p>© 2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</p>
</availability>
<date>2002</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Markov‐type Evolution of Materials into a Polar State</title>
<author xml:id="author-1">
<persName>
<forename type="first">Jürg</forename>
<surname>Hulliger</surname>
</persName>
<roleName type="degree">Prof. Dr.</roleName>
<email>juerg.hulliger@iac.unibe.ch</email>
<affiliation>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Chemistry – A European Journal</title>
<title level="j" type="abbrev">Chemistry – A European Journal</title>
<idno type="pISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<idno type="DOI">10.1002/(ISSN)1521-3765</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2002-10-18"></date>
<biblScope unit="volume">8</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="4578">4578</biblScope>
<biblScope unit="page" to="4586">4586</biblScope>
</imprint>
</monogr>
<idno type="istex">0300C5FE235795986FD18BEBB034D4001FBAD9D9</idno>
<idno type="DOI">10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S</idno>
<idno type="ArticleID">CHEM4578</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2002</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties.</p>
</abstract>
<abstract>
<p>A general principle of growth is presented that explains polarity formation in heaps of mechanical objects, molecular crystals and connective tissues by a Markov chain mechanism which drives the attachment of polar building blocks (see scheme). Polar dielectric properties of connective tissues have been known for more than 35 years; however, the mechanistic origin for pyroelectricity remained unexplained until now.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>connective tissues</term>
</item>
<item>
<term>crystal growth</term>
</item>
<item>
<term>Markov chain</term>
</item>
<item>
<term>polar properties</term>
</item>
<item>
<term>self‐assembly</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Concept</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-10-18">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0300C5FE235795986FD18BEBB034D4001FBAD9D9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-3765</doi>
<issn type="print">0947-6539</issn>
<issn type="electronic">1521-3765</issn>
<idGroup>
<id type="product" value="CHEM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en">Chemistry – A European Journal</title>
<title type="short">Chemistry – A European Journal</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="200">
<doi origin="wiley" registered="yes">10.1002/1521-3765(20021018)8:20<>1.0.CO;2-E</doi>
<numberingGroup>
<numbering type="journalVolume" number="8">8</numbering>
<numbering type="journalIssue">20</numbering>
</numberingGroup>
<coverDate startDate="2002-10-18">October 18, 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S</doi>
<idGroup>
<id type="unit" value="CHEM4578"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Concept</title>
</titleGroup>
<copyright ownership="publisher">© 2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="firstOnline" date="2002-10-01"></event>
<event type="publishedOnlineFinalForm" date="2002-10-01"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.5 mode:FullText source:FullText result:FullText mathml2tex" date="2010-04-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-09"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">4578</numbering>
<numbering type="pageLast">4586</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:CHEM.CHEM4578.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="86"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Markov‐type Evolution of Materials into a Polar State</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#afa">
<personName>
<givenNames>Jürg</givenNames>
<familyName>Hulliger</familyName>
<degrees>Prof. Dr.</degrees>
</personName>
<contactDetails>
<email>juerg.hulliger@iac.unibe.ch</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="afa" countryCode="CH" type="organization">
<unparsedAffiliation>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">connective tissues</keyword>
<keyword xml:id="kwd2">crystal growth</keyword>
<keyword xml:id="kwd3">Markov chain</keyword>
<keyword xml:id="kwd4">polar properties</keyword>
<keyword xml:id="kwd5">self‐assembly</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties. </p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>
<b>A general principle of growth</b>
is presented that explains polarity formation in heaps of mechanical objects, molecular crystals and connective tissues by a Markov chain mechanism which drives the attachment of polar building blocks (see scheme). Polar dielectric properties of connective tissues have been known for more than 35 years; however, the mechanistic origin for pyroelectricity remained unexplained until now.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="WILEY-VCH" href="urn:x-wiley:09476539:media:CHEM4578:content"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/gif" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Markov‐type Evolution of Materials into a Polar State</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Markov‐type Evolution of Materials into a Polar State</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jürg</namePart>
<namePart type="family">Hulliger</namePart>
<namePart type="termsOfAddress">Prof. Dr.</namePart>
<affiliation>Department of Chemistry and Biochemistry University of Berne Freiestrasse 3, 3012 Berne (Switzerland) Fax: (+41) 31‐631‐3993</affiliation>
<affiliation>E-mail: juerg.hulliger@iac.unibe.ch</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-10-18</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">1</extent>
<extent unit="references">86</extent>
</physicalDescription>
<abstract lang="en">Assembling polar building blocks into a solid material by a Markov‐chain process of unidirectional growth principally results in a metastable state that shows effects of macroscopic polarity. Stochastic polarity formation can be described by probabilities for the attachment of building blocks to a surface. Because of the polar symmetry of the building blocks, there is a fundamental difference in the probabilities for attaching them “tip‐first” or “back‐first” to growth sites at a surface. A difference in the corresponding probabilities drives the evolution of a vectorial property through a gain in configurational entropy. Examples from the mechanical, the crystalline and the biological world demonstrate growth‐induced macroscopic polarity. In crystals, growth upon centrosymmetric seeds can produce twinned crystals with a “sectorwise” pyroelectric effect. Polarity formation in connective tissues is explained by a Markov‐chain mechanism, which drives the self‐assembly of collagen fibril segments. An unified stochastic growth model brings up a general concept for the formation of materials with polar properties.</abstract>
<abstract>A general principle of growth is presented that explains polarity formation in heaps of mechanical objects, molecular crystals and connective tissues by a Markov chain mechanism which drives the attachment of polar building blocks (see scheme). Polar dielectric properties of connective tissues have been known for more than 35 years; however, the mechanistic origin for pyroelectricity remained unexplained until now.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>connective tissues</topic>
<topic>crystal growth</topic>
<topic>Markov chain</topic>
<topic>polar properties</topic>
<topic>self‐assembly</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chemistry – A European Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Chemistry – A European Journal</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Concept</topic>
</subject>
<identifier type="ISSN">0947-6539</identifier>
<identifier type="eISSN">1521-3765</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-3765</identifier>
<identifier type="PublisherID">CHEM</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>4578</start>
<end>4586</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0300C5FE235795986FD18BEBB034D4001FBAD9D9</identifier>
<identifier type="DOI">10.1002/1521-3765(20021018)8:20<4578::AID-CHEM4578>3.0.CO;2-S</identifier>
<identifier type="ArticleID">CHEM4578</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C60 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000C60 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0300C5FE235795986FD18BEBB034D4001FBAD9D9
   |texte=   Markov‐type Evolution of Materials into a Polar State
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024