Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.

Identifieur interne : 001031 ( Main/Exploration ); précédent : 001030; suivant : 001032

Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.

Auteurs : Valerie Caron [Australie] ; Fiona J. Ede [Australie] ; Paul Sunnucks [Australie]

Source :

RBID : pubmed:24914550

Descripteurs français

English descriptors

Abstract

Clonality is a common characteristic of successful invasive species, but general principles underpinning the success of clonal invaders are not established. A number of mechanisms could contribute to invasion success including clones with broad tolerances and preferences, specialist clones and adaptation in situ. The majority of studies to date have been of plants and some invertebrate parthenogens, particularly aphids, and have not necessarily caught invasion at very early stages. Here we describe the early stages of an invasion by a Northern Hemisphere Hymenopteran model in three different land masses in the Southern Hemisphere. Nematus oligospilus Förster (Hymenoptera: Tenthredinidae), a sawfly feeding on willows (Salix spp.), was recently introduced to the Southern Hemisphere where it has become invasive and is strictly parthenogenetic. In this study, the number of N. oligospilus clones, their distribution in the landscape and on different willow hosts in South Africa, New Zealand and Australia were assessed using 25 microsatellite markers. Evidence is presented for the presence of two very common and widespread multilocus genotypes (MLGs) or 'superclones' dominating in the three countries. Rarer MLGs were closely related to the most widespread superclone; it is plausible that all N. oligospilus individuals were derived from a single clone. A few initial introductions to Australia and New Zealand seemed to have occurred. Our results point towards a separate introduction in Western Australia, potentially from South Africa. Rarer clones that were dominant locally putatively arose in situ, and might be locally favoured, or simply have not yet had time to spread. Data presented represent rare baseline data early in the invasion process for insights into the mechanisms that underlie the success of a global invader, and develop Nematus oligospilus as a valuable model to understand invasion genetics of clonal pests.

DOI: 10.1371/journal.pone.0097744
PubMed: 24914550
PubMed Central: PMC4051638


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.</title>
<author>
<name sortKey="Caron, Valerie" sort="Caron, Valerie" uniqKey="Caron V" first="Valerie" last="Caron">Valerie Caron</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ede, Fiona J" sort="Ede, Fiona J" uniqKey="Ede F" first="Fiona J" last="Ede">Fiona J. Ede</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sunnucks, Paul" sort="Sunnucks, Paul" uniqKey="Sunnucks P" first="Paul" last="Sunnucks">Paul Sunnucks</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24914550</idno>
<idno type="pmid">24914550</idno>
<idno type="doi">10.1371/journal.pone.0097744</idno>
<idno type="pmc">PMC4051638</idno>
<idno type="wicri:Area/Main/Corpus">001097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001097</idno>
<idno type="wicri:Area/Main/Curation">001097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001097</idno>
<idno type="wicri:Area/Main/Exploration">001097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.</title>
<author>
<name sortKey="Caron, Valerie" sort="Caron, Valerie" uniqKey="Caron V" first="Valerie" last="Caron">Valerie Caron</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ede, Fiona J" sort="Ede, Fiona J" uniqKey="Ede F" first="Fiona J" last="Ede">Fiona J. Ede</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sunnucks, Paul" sort="Sunnucks, Paul" uniqKey="Sunnucks P" first="Paul" last="Sunnucks">Paul Sunnucks</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Hymenoptera (genetics)</term>
<term>Introduced Species (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Phylogeography (MeSH)</term>
<term>Salix (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Espèce introduite (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Hymenoptera (génétique)</term>
<term>Phylogéographie (MeSH)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Salix (génétique)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hymenoptera</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hymenoptera</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Introduced Species</term>
<term>Microsatellite Repeats</term>
<term>Phylogeography</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Espèce introduite</term>
<term>Génotype</term>
<term>Phylogéographie</term>
<term>Répétitions microsatellites</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clonality is a common characteristic of successful invasive species, but general principles underpinning the success of clonal invaders are not established. A number of mechanisms could contribute to invasion success including clones with broad tolerances and preferences, specialist clones and adaptation in situ. The majority of studies to date have been of plants and some invertebrate parthenogens, particularly aphids, and have not necessarily caught invasion at very early stages. Here we describe the early stages of an invasion by a Northern Hemisphere Hymenopteran model in three different land masses in the Southern Hemisphere. Nematus oligospilus Förster (Hymenoptera: Tenthredinidae), a sawfly feeding on willows (Salix spp.), was recently introduced to the Southern Hemisphere where it has become invasive and is strictly parthenogenetic. In this study, the number of N. oligospilus clones, their distribution in the landscape and on different willow hosts in South Africa, New Zealand and Australia were assessed using 25 microsatellite markers. Evidence is presented for the presence of two very common and widespread multilocus genotypes (MLGs) or 'superclones' dominating in the three countries. Rarer MLGs were closely related to the most widespread superclone; it is plausible that all N. oligospilus individuals were derived from a single clone. A few initial introductions to Australia and New Zealand seemed to have occurred. Our results point towards a separate introduction in Western Australia, potentially from South Africa. Rarer clones that were dominant locally putatively arose in situ, and might be locally favoured, or simply have not yet had time to spread. Data presented represent rare baseline data early in the invasion process for insights into the mechanisms that underlie the success of a global invader, and develop Nematus oligospilus as a valuable model to understand invasion genetics of clonal pests. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24914550</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.</ArticleTitle>
<Pagination>
<MedlinePgn>e97744</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0097744</ELocationID>
<Abstract>
<AbstractText>Clonality is a common characteristic of successful invasive species, but general principles underpinning the success of clonal invaders are not established. A number of mechanisms could contribute to invasion success including clones with broad tolerances and preferences, specialist clones and adaptation in situ. The majority of studies to date have been of plants and some invertebrate parthenogens, particularly aphids, and have not necessarily caught invasion at very early stages. Here we describe the early stages of an invasion by a Northern Hemisphere Hymenopteran model in three different land masses in the Southern Hemisphere. Nematus oligospilus Förster (Hymenoptera: Tenthredinidae), a sawfly feeding on willows (Salix spp.), was recently introduced to the Southern Hemisphere where it has become invasive and is strictly parthenogenetic. In this study, the number of N. oligospilus clones, their distribution in the landscape and on different willow hosts in South Africa, New Zealand and Australia were assessed using 25 microsatellite markers. Evidence is presented for the presence of two very common and widespread multilocus genotypes (MLGs) or 'superclones' dominating in the three countries. Rarer MLGs were closely related to the most widespread superclone; it is plausible that all N. oligospilus individuals were derived from a single clone. A few initial introductions to Australia and New Zealand seemed to have occurred. Our results point towards a separate introduction in Western Australia, potentially from South Africa. Rarer clones that were dominant locally putatively arose in situ, and might be locally favoured, or simply have not yet had time to spread. Data presented represent rare baseline data early in the invasion process for insights into the mechanisms that underlie the success of a global invader, and develop Nematus oligospilus as a valuable model to understand invasion genetics of clonal pests. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caron</LastName>
<ForeName>Valerie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ede</LastName>
<ForeName>Fiona J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sunnucks</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006927" MajorTopicYN="N">Hymenoptera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="Y">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24914550</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0097744</ArticleId>
<ArticleId IdType="pii">PONE-D-13-51998</ArticleId>
<ArticleId IdType="pmc">PMC4051638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 1999 Oct;8(10):1655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Entomol Res. 2013 Feb;103(1):74-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22929915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Oct;162(2):813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 May;19(9):1774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1996 Mar;13(3):510-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Oct;52(5):1325-1333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2007 Sep;22(9):454-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17673331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Mar;21(3):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2006 Jun;87(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1095-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 May;14(6):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15836643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 Jun;49(6):678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16936847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Oct;144(2):747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8889535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jun;14(7):1869-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Dec;30(12):2515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15724968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Nov 7;275(1650):2473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1997 Nov;6(11):1059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9394464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1967 May;19(3 Pt 1):233-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6026583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2007 Dec;21(6):1612-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Oct;53(5):1446-1457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2010 Sep;56(9):1058-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20223246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Nov;19(21):4738-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20958814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Jul;95(1):24-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(21):4608-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2005 Dec 7;272(1580):2449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jan;17(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Dec;12(12):3493-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14629364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2006 Mar;19(2):392-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16599915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1999 Apr;8(4):531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10327655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Oct;99(4):414-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17551520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Caron, Valerie" sort="Caron, Valerie" uniqKey="Caron V" first="Valerie" last="Caron">Valerie Caron</name>
</noRegion>
<name sortKey="Ede, Fiona J" sort="Ede, Fiona J" uniqKey="Ede F" first="Fiona J" last="Ede">Fiona J. Ede</name>
<name sortKey="Sunnucks, Paul" sort="Sunnucks, Paul" uniqKey="Sunnucks P" first="Paul" last="Sunnucks">Paul Sunnucks</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24914550
   |texte=   Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24914550" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020