Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic architecture of spring and autumn phenology in Salix.

Identifieur interne : 001125 ( Main/Exploration ); précédent : 001124; suivant : 001126

Genetic architecture of spring and autumn phenology in Salix.

Auteurs : Luisa Ghelardini ; Sofia Berlin ; Martin Weih ; Ulf Lagercrantz ; Niclas Gyllenstrand ; Ann Christin Rönnberg-W Stljung [Suède]

Source :

RBID : pubmed:24438179

Descripteurs français

English descriptors

Abstract

BACKGROUND

In woody plants from temperate regions, adaptation to the local climate results in annual cycles of growth and dormancy, and optimal regulation of these cycles are critical for growth, long-term survival, and competitive success. In this study we have investigated the genetic background to growth phenology in a Salix pedigree by assessing genetic and phenotypic variation in growth cessation, leaf senescence and bud burst in different years and environments. A previously constructed linkage map using the same pedigree and anchored to the annotated genome of P. trichocarpa was improved in target regions and used for QTL analysis of the traits. The major aims in this study were to map QTLs for phenology traits in Salix, and to identify candidate genes in QTL hot spots through comparative mapping with the closely related Populus trichocarpa.

RESULTS

All traits varied significantly among genotypes and the broad-sense heritabilities ranged between 0.5 and 0.9, with the highest for leaf senescence. In total across experiment and years, 80 QTLs were detected. For individual traits, the QTLs explained together from 21.5 to 56.5% of the variation. Generally each individual QTL explained a low amount of the variation but three QTLs explained above 15% of the variation with one QTL for leaf senescence explaining 34% of the variation. The majority of the QTLs were recurrently identified across traits, years and environments. Two hotspots were identified on linkage group (LG) II and X where narrow QTLs for all traits co-localized.

CONCLUSIONS

This study provides the most detailed analysis of QTL detection for phenology in Salix conducted so far. Several hotspot regions were found where QTLs for different traits and QTLs for the same trait but identified during different years co-localised. Many QTLs co-localised with QTLs found in poplar for similar traits that could indicate common pathways for these traits in Salicaceae. This study is an important first step in identifying QTLs and candidate genes for phenology traits in Salix.


DOI: 10.1186/1471-2229-14-31
PubMed: 24438179
PubMed Central: PMC3945485


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic architecture of spring and autumn phenology in Salix.</title>
<author>
<name sortKey="Ghelardini, Luisa" sort="Ghelardini, Luisa" uniqKey="Ghelardini L" first="Luisa" last="Ghelardini">Luisa Ghelardini</name>
</author>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
</author>
<author>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
<author>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden. Anki.Wastljung@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24438179</idno>
<idno type="pmid">24438179</idno>
<idno type="doi">10.1186/1471-2229-14-31</idno>
<idno type="pmc">PMC3945485</idno>
<idno type="wicri:Area/Main/Corpus">001155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001155</idno>
<idno type="wicri:Area/Main/Curation">001155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001155</idno>
<idno type="wicri:Area/Main/Exploration">001155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic architecture of spring and autumn phenology in Salix.</title>
<author>
<name sortKey="Ghelardini, Luisa" sort="Ghelardini, Luisa" uniqKey="Ghelardini L" first="Luisa" last="Ghelardini">Luisa Ghelardini</name>
</author>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
</author>
<author>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
<author>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden. Anki.Wastljung@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genetic Linkage (genetics)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Salix (genetics)</term>
<term>Salix (growth & development)</term>
<term>Salix (physiology)</term>
<term>Seasons (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Liaison génétique (génétique)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Saisons (MeSH)</term>
<term>Salix (croissance et développement)</term>
<term>Salix (génétique)</term>
<term>Salix (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Linkage</term>
<term>Quantitative Trait Loci</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Liaison génétique</term>
<term>Locus de caractère quantitatif</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In woody plants from temperate regions, adaptation to the local climate results in annual cycles of growth and dormancy, and optimal regulation of these cycles are critical for growth, long-term survival, and competitive success. In this study we have investigated the genetic background to growth phenology in a Salix pedigree by assessing genetic and phenotypic variation in growth cessation, leaf senescence and bud burst in different years and environments. A previously constructed linkage map using the same pedigree and anchored to the annotated genome of P. trichocarpa was improved in target regions and used for QTL analysis of the traits. The major aims in this study were to map QTLs for phenology traits in Salix, and to identify candidate genes in QTL hot spots through comparative mapping with the closely related Populus trichocarpa.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>All traits varied significantly among genotypes and the broad-sense heritabilities ranged between 0.5 and 0.9, with the highest for leaf senescence. In total across experiment and years, 80 QTLs were detected. For individual traits, the QTLs explained together from 21.5 to 56.5% of the variation. Generally each individual QTL explained a low amount of the variation but three QTLs explained above 15% of the variation with one QTL for leaf senescence explaining 34% of the variation. The majority of the QTLs were recurrently identified across traits, years and environments. Two hotspots were identified on linkage group (LG) II and X where narrow QTLs for all traits co-localized.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides the most detailed analysis of QTL detection for phenology in Salix conducted so far. Several hotspot regions were found where QTLs for different traits and QTLs for the same trait but identified during different years co-localised. Many QTLs co-localised with QTLs found in poplar for similar traits that could indicate common pathways for these traits in Salicaceae. This study is an important first step in identifying QTLs and candidate genes for phenology traits in Salix.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24438179</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic architecture of spring and autumn phenology in Salix.</ArticleTitle>
<Pagination>
<MedlinePgn>31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-14-31</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In woody plants from temperate regions, adaptation to the local climate results in annual cycles of growth and dormancy, and optimal regulation of these cycles are critical for growth, long-term survival, and competitive success. In this study we have investigated the genetic background to growth phenology in a Salix pedigree by assessing genetic and phenotypic variation in growth cessation, leaf senescence and bud burst in different years and environments. A previously constructed linkage map using the same pedigree and anchored to the annotated genome of P. trichocarpa was improved in target regions and used for QTL analysis of the traits. The major aims in this study were to map QTLs for phenology traits in Salix, and to identify candidate genes in QTL hot spots through comparative mapping with the closely related Populus trichocarpa.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">All traits varied significantly among genotypes and the broad-sense heritabilities ranged between 0.5 and 0.9, with the highest for leaf senescence. In total across experiment and years, 80 QTLs were detected. For individual traits, the QTLs explained together from 21.5 to 56.5% of the variation. Generally each individual QTL explained a low amount of the variation but three QTLs explained above 15% of the variation with one QTL for leaf senescence explaining 34% of the variation. The majority of the QTLs were recurrently identified across traits, years and environments. Two hotspots were identified on linkage group (LG) II and X where narrow QTLs for all traits co-localized.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides the most detailed analysis of QTL detection for phenology in Salix conducted so far. Several hotspot regions were found where QTLs for different traits and QTLs for the same trait but identified during different years co-localised. Many QTLs co-localised with QTLs found in poplar for similar traits that could indicate common pathways for these traits in Salicaceae. This study is an important first step in identifying QTLs and candidate genes for phenology traits in Salix.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ghelardini</LastName>
<ForeName>Luisa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berlin</LastName>
<ForeName>Sofia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weih</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lagercrantz</LastName>
<ForeName>Ulf</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gyllenstrand</LastName>
<ForeName>Niclas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rönnberg-Wästljung</LastName>
<ForeName>Ann Christin</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden. Anki.Wastljung@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24438179</ArticleId>
<ArticleId IdType="pii">1471-2229-14-31</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-14-31</ArticleId>
<ArticleId IdType="pmc">PMC3945485</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 May;108(7):1335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hereditas. 2003;138(3):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jul;195(2):461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22548444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Dec;29(12):1479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Jan;121(1):185-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2563713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Sep;90(9):1389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1982-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1635-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1971 Jan 8;171(3966):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17737985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Feb;139(2):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7713445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2011 Oct;1(5):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Nov;83 (Pt 5):613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jan;180(1):120-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008 Jul;179(2):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19086294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Mar;11(2):142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2501-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):354-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Symp Soc Exp Biol. 1969;23:395-448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5367176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Sep;191(4):926-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2012;8:574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 May;106(5):788-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20823903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1995 Nov;11(3):241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7581446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jan;98(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):49-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1971 Jan;47(1):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<name sortKey="Ghelardini, Luisa" sort="Ghelardini, Luisa" uniqKey="Ghelardini L" first="Luisa" last="Ghelardini">Luisa Ghelardini</name>
<name sortKey="Gyllenstrand, Niclas" sort="Gyllenstrand, Niclas" uniqKey="Gyllenstrand N" first="Niclas" last="Gyllenstrand">Niclas Gyllenstrand</name>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
<name sortKey="Weih, Martin" sort="Weih, Martin" uniqKey="Weih M" first="Martin" last="Weih">Martin Weih</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001125 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001125 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24438179
   |texte=   Genetic architecture of spring and autumn phenology in Salix.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24438179" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020