Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RAD sequencing resolved phylogenetic relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs.

Identifieur interne : 000668 ( Main/Exploration ); précédent : 000667; suivant : 000669

RAD sequencing resolved phylogenetic relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs.

Auteurs : Natascha Dorothea Wagner ; Susanne Gramlich ; Elvira Hörandl

Source :

RBID : pubmed:30250699

Abstract

The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.

DOI: 10.1002/ece3.4360
PubMed: 30250699
PubMed Central: PMC6145212


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RAD sequencing resolved phylogenetic relationships in European shrub willows (
<i>Salix</i>
L. subg.
<i>Chamaetia</i>
and subg.
<i>Vetrix</i>
) and revealed multiple evolution of dwarf shrubs.</title>
<author>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30250699</idno>
<idno type="pmid">30250699</idno>
<idno type="doi">10.1002/ece3.4360</idno>
<idno type="pmc">PMC6145212</idno>
<idno type="wicri:Area/Main/Corpus">000628</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000628</idno>
<idno type="wicri:Area/Main/Curation">000628</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000628</idno>
<idno type="wicri:Area/Main/Exploration">000628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RAD sequencing resolved phylogenetic relationships in European shrub willows (
<i>Salix</i>
L. subg.
<i>Chamaetia</i>
and subg.
<i>Vetrix</i>
) and revealed multiple evolution of dwarf shrubs.</title>
<author>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<affiliation>
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</nlm:affiliation>
<wicri:noCountry code="subField">Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The large and diverse genus
<i>Salix</i>
L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg.
<i>Chamaetia</i>
) and taller shrubs (subg.
<i>Vetrix</i>
), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in
<i>Salix</i>
. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera
<i>Chamaetia</i>
and
<i>Vetrix</i>
were recognized as nonmonophyletic, which suggests that they should be merged. Within the
<i>Vetrix/Chamaetia</i>
clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus
<i>Salix</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30250699</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2018</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>RAD sequencing resolved phylogenetic relationships in European shrub willows (
<i>Salix</i>
L. subg.
<i>Chamaetia</i>
and subg.
<i>Vetrix</i>
) and revealed multiple evolution of dwarf shrubs.</ArticleTitle>
<Pagination>
<MedlinePgn>8243-8255</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.4360</ELocationID>
<Abstract>
<AbstractText>The large and diverse genus
<i>Salix</i>
L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg.
<i>Chamaetia</i>
) and taller shrubs (subg.
<i>Vetrix</i>
), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in
<i>Salix</i>
. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera
<i>Chamaetia</i>
and
<i>Vetrix</i>
were recognized as nonmonophyletic, which suggests that they should be merged. Within the
<i>Vetrix/Chamaetia</i>
clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus
<i>Salix</i>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Natascha Dorothea</ForeName>
<Initials>ND</Initials>
<Identifier Source="ORCID">0000-0001-6623-7623</Identifier>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gramlich</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hörandl</LastName>
<ForeName>Elvira</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) University of Goettingen Göttingen Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RAD sequencing</Keyword>
<Keyword MajorTopicYN="N">Salix</Keyword>
<Keyword MajorTopicYN="N">character evolution</Keyword>
<Keyword MajorTopicYN="N">phylogenetics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30250699</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.4360</ArticleId>
<ArticleId IdType="pii">ECE34360</ArticleId>
<ArticleId IdType="pmc">PMC6145212</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Heredity (Edinb). 2015 May;114(5):450-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Apr;3(4):846-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23610629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2013 Sep;62(5):689-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Feb 26;6(2):e1000862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 13;6(4):e18561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jun 17;12(7):499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2016 Jan;117(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26520565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 04;9(4):e93975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24705617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 26;6(4):e19315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 16;10(4):e0121965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Oct;23(19):4737-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24944007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2014 Oct;79:359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25010772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2003 Feb;90(2):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2013 Feb;66(2):526-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2016 Jul;100:70-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26993764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):3098-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23167599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2016 Jun;116(6):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26980342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2015 Apr;102(4):634-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25878096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2000 Jan;87(1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2017 May 1;66(3):399-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27798402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2016 Feb;17(2):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2015 Nov;64(6):1032-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26227865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2016 Jul;65(4):685-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26681696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodivers Data J. 2015 Oct 30;(3):e6258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23057853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 May;24(10):2392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25809206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1736-1750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28333396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Oct 05;6(21):7645-7655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30128118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):2986-3001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23551333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2008 Oct;57(5):758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2015 Mar 04;15:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25886526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 20;8:1050</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28676809</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000668 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000668 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30250699
   |texte=   RAD sequencing resolved phylogenetic relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30250699" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020