Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host plant shifts affect a major defense enzyme in Chrysomela lapponica.

Identifieur interne : 001577 ( Main/Curation ); précédent : 001576; suivant : 001578

Host plant shifts affect a major defense enzyme in Chrysomela lapponica.

Auteurs : Roy Kirsch [Allemagne] ; Heiko Vogel ; Alexander Muck ; Kathrin Reichwald ; Jacques M. Pasteels ; Wilhelm Boland

Source :

RBID : pubmed:21383196

Descripteurs français

English descriptors

Abstract

Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders.

DOI: 10.1073/pnas.1013846108
PubMed: 21383196
PubMed Central: PMC3064323

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21383196

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host plant shifts affect a major defense enzyme in Chrysomela lapponica.</title>
<author>
<name sortKey="Kirsch, Roy" sort="Kirsch, Roy" uniqKey="Kirsch R" first="Roy" last="Kirsch">Roy Kirsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, 07745 Jena</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Heiko" sort="Vogel, Heiko" uniqKey="Vogel H" first="Heiko" last="Vogel">Heiko Vogel</name>
</author>
<author>
<name sortKey="Muck, Alexander" sort="Muck, Alexander" uniqKey="Muck A" first="Alexander" last="Muck">Alexander Muck</name>
</author>
<author>
<name sortKey="Reichwald, Kathrin" sort="Reichwald, Kathrin" uniqKey="Reichwald K" first="Kathrin" last="Reichwald">Kathrin Reichwald</name>
</author>
<author>
<name sortKey="Pasteels, Jacques M" sort="Pasteels, Jacques M" uniqKey="Pasteels J" first="Jacques M" last="Pasteels">Jacques M. Pasteels</name>
</author>
<author>
<name sortKey="Boland, Wilhelm" sort="Boland, Wilhelm" uniqKey="Boland W" first="Wilhelm" last="Boland">Wilhelm Boland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21383196</idno>
<idno type="pmid">21383196</idno>
<idno type="doi">10.1073/pnas.1013846108</idno>
<idno type="pmc">PMC3064323</idno>
<idno type="wicri:Area/Main/Corpus">001577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001577</idno>
<idno type="wicri:Area/Main/Curation">001577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001577</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host plant shifts affect a major defense enzyme in Chrysomela lapponica.</title>
<author>
<name sortKey="Kirsch, Roy" sort="Kirsch, Roy" uniqKey="Kirsch R" first="Roy" last="Kirsch">Roy Kirsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, 07745 Jena</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Heiko" sort="Vogel, Heiko" uniqKey="Vogel H" first="Heiko" last="Vogel">Heiko Vogel</name>
</author>
<author>
<name sortKey="Muck, Alexander" sort="Muck, Alexander" uniqKey="Muck A" first="Alexander" last="Muck">Alexander Muck</name>
</author>
<author>
<name sortKey="Reichwald, Kathrin" sort="Reichwald, Kathrin" uniqKey="Reichwald K" first="Kathrin" last="Reichwald">Kathrin Reichwald</name>
</author>
<author>
<name sortKey="Pasteels, Jacques M" sort="Pasteels, Jacques M" uniqKey="Pasteels J" first="Jacques M" last="Pasteels">Jacques M. Pasteels</name>
</author>
<author>
<name sortKey="Boland, Wilhelm" sort="Boland, Wilhelm" uniqKey="Boland W" first="Wilhelm" last="Boland">Wilhelm Boland</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (physiology)</term>
<term>Alcohol Oxidoreductases (biosynthesis)</term>
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Animals (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Betula (MeSH)</term>
<term>Coleoptera (enzymology)</term>
<term>Coleoptera (genetics)</term>
<term>Feeding Behavior (physiology)</term>
<term>Gene Expression Regulation, Enzymologic (physiology)</term>
<term>Glucosides (metabolism)</term>
<term>Insect Proteins (biosynthesis)</term>
<term>Insect Proteins (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Salix (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (physiologie)</term>
<term>Alcohol oxidoreductases (biosynthèse)</term>
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcools benzyliques (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Betula (MeSH)</term>
<term>Coléoptères (enzymologie)</term>
<term>Coléoptères (génétique)</term>
<term>Comportement alimentaire (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Glucosides (métabolisme)</term>
<term>Protéines d'insecte (biosynthèse)</term>
<term>Protéines d'insecte (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (physiologie)</term>
<term>Salix (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Insect Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Insect Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzyl Alcohols</term>
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Protéines d'insecte</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coléoptères</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coleoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coleoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Coléoptères</term>
<term>Protéines d'insecte</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcools benzyliques</term>
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Comportement alimentaire</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Feeding Behavior</term>
<term>Gene Expression Regulation, Enzymologic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Betula</term>
<term>Molecular Sequence Data</term>
<term>Plant Leaves</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Betula</term>
<term>Données de séquences moléculaires</term>
<term>Feuilles de plante</term>
<term>Salix</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21383196</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Host plant shifts affect a major defense enzyme in Chrysomela lapponica.</ArticleTitle>
<Pagination>
<MedlinePgn>4897-901</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1013846108</ELocationID>
<Abstract>
<AbstractText>Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kirsch</LastName>
<ForeName>Roy</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vogel</LastName>
<ForeName>Heiko</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muck</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reichwald</LastName>
<ForeName>Kathrin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pasteels</LastName>
<ForeName>Jacques M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boland</LastName>
<ForeName>Wilhelm</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HQ245144</AccessionNumber>
<AccessionNumber>HQ245145</AccessionNumber>
<AccessionNumber>HQ245146</AccessionNumber>
<AccessionNumber>HQ245147</AccessionNumber>
<AccessionNumber>HQ245148</AccessionNumber>
<AccessionNumber>HQ245149</AccessionNumber>
<AccessionNumber>HQ245150</AccessionNumber>
<AccessionNumber>HQ245151</AccessionNumber>
<AccessionNumber>HQ245152</AccessionNumber>
<AccessionNumber>HQ245153</AccessionNumber>
<AccessionNumber>HQ245154</AccessionNumber>
<AccessionNumber>HQ245155</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019476">Insect Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4649620TBZ</RegistryNumber>
<NameOfSubstance UI="C005696">salicin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.7</RegistryNumber>
<NameOfSubstance UI="C473419">salicyl alcohol oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="Y">Betula</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019476" MajorTopicYN="N">Insect Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="Y">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="Y">Salix</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21383196</ArticleId>
<ArticleId IdType="pii">1013846108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1013846108</ArticleId>
<ArticleId IdType="pmc">PMC3064323</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 1999 Aug;8(8):1297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Sep;17(9):1344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10958851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2002 Jan 7;269(1486):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 Feb;28(2):317-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2002 Nov;32(11):1517-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12530219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Aug 18;338(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15365181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Feb 5;223(3):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1542121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2007 Jan;33(1):5-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 May 11;7:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Aug 16;229(4714):649-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17739376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 11;283(28):19219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18482980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2009 Sep 4;10(13):2223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19623597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 May;20(5):1075-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1990 Jan;16(1):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24264908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1980 Jul;46(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Apr;52(2):517-528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001577 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001577 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21383196
   |texte=   Host plant shifts affect a major defense enzyme in Chrysomela lapponica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:21383196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020