Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The potential for phytoremediation of iron cyanide complex by willows.

Identifieur interne : 001B56 ( Main/Corpus ); précédent : 001B55; suivant : 001B57

The potential for phytoremediation of iron cyanide complex by willows.

Auteurs : Xiao-Zhang Yu ; Pu-Hua Zhou ; Yong-Miao Yang

Source :

RBID : pubmed:16703454

English descriptors

Abstract

Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

DOI: 10.1007/s10646-006-0081-5
PubMed: 16703454

Links to Exploration step

pubmed:16703454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The potential for phytoremediation of iron cyanide complex by willows.</title>
<author>
<name sortKey="Yu, Xiao Zhang" sort="Yu, Xiao Zhang" uniqKey="Yu X" first="Xiao-Zhang" last="Yu">Xiao-Zhang Yu</name>
<affiliation>
<nlm:affiliation>Department of Environmental Science, Hunan Agricultural University, Changsha 410128, Hunan, PR China. yuxiaozhang@hotmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Pu Hua" sort="Zhou, Pu Hua" uniqKey="Zhou P" first="Pu-Hua" last="Zhou">Pu-Hua Zhou</name>
</author>
<author>
<name sortKey="Yang, Yong Miao" sort="Yang, Yong Miao" uniqKey="Yang Y" first="Yong-Miao" last="Yang">Yong-Miao Yang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16703454</idno>
<idno type="pmid">16703454</idno>
<idno type="doi">10.1007/s10646-006-0081-5</idno>
<idno type="wicri:Area/Main/Corpus">001B56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The potential for phytoremediation of iron cyanide complex by willows.</title>
<author>
<name sortKey="Yu, Xiao Zhang" sort="Yu, Xiao Zhang" uniqKey="Yu X" first="Xiao-Zhang" last="Yu">Xiao-Zhang Yu</name>
<affiliation>
<nlm:affiliation>Department of Environmental Science, Hunan Agricultural University, Changsha 410128, Hunan, PR China. yuxiaozhang@hotmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Pu Hua" sort="Zhou, Pu Hua" uniqKey="Zhou P" first="Pu-Hua" last="Zhou">Pu-Hua Zhou</name>
</author>
<author>
<name sortKey="Yang, Yong Miao" sort="Yang, Yong Miao" uniqKey="Yang Y" first="Yong-Miao" last="Yang">Yong-Miao Yang</name>
</author>
</analytic>
<series>
<title level="j">Ecotoxicology (London, England)</title>
<idno type="ISSN">0963-9292</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Ferrocyanides (chemistry)</term>
<term>Ferrocyanides (pharmacokinetics)</term>
<term>Humans (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Plant Stems (MeSH)</term>
<term>Salix (metabolism)</term>
<term>Soil Pollutants (chemistry)</term>
<term>Soil Pollutants (pharmacokinetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ferrocyanides</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Ferrocyanides</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Humans</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16703454</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0963-9292</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Ecotoxicology (London, England)</Title>
<ISOAbbreviation>Ecotoxicology</ISOAbbreviation>
</Journal>
<ArticleTitle>The potential for phytoremediation of iron cyanide complex by willows.</ArticleTitle>
<Pagination>
<MedlinePgn>461-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xiao-Zhang</ForeName>
<Initials>XZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Science, Hunan Agricultural University, Changsha 410128, Hunan, PR China. yuxiaozhang@hotmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Pu-Hua</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yong-Miao</ForeName>
<Initials>YM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecotoxicology</MedlineTA>
<NlmUniqueID>9885956</NlmUniqueID>
<ISSNLinking>0963-9292</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005295">Ferrocyanides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GTP1P30292</RegistryNumber>
<NameOfSubstance UI="C031835">potassium ferrocyanide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005295" MajorTopicYN="N">Ferrocyanides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16703454</ArticleId>
<ArticleId IdType="doi">10.1007/s10646-006-0081-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Technol. 2006 Mar 15;40(6):1956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Aug;46(6):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11575729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Sep;73(1):182-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 May 25;244(10):2632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5769995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 May;59(8):1099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2004;127(2):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1980 Jun;65(6):1199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2005;12(2):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15859117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2004 Jan;54(3):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2000 Aug;39(2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10871417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Feb 15;267(5):3079-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2004 Jul;56(2):121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ciba Found Symp. 1988;140:92-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2005 Aug;49(2):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15981035</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16703454
   |texte=   The potential for phytoremediation of iron cyanide complex by willows.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16703454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020