Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.

Identifieur interne : 001785 ( Main/Corpus ); précédent : 001784; suivant : 001786

Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.

Auteurs : Hua Su ; Yonggeng Li ; Zhenjiang Lan ; Hong Xu ; Wei Liu ; Bingxue Wang ; Dilip Kumar Biswas ; Gaoming Jiang

Source :

RBID : pubmed:19536609

English descriptors

Abstract

To cope with adverse environments, the majority of indigenous plants in arid regions possess adaptive plasticity after long-term evolution. Leaf-level morphology, anatomy, biochemical properties, diurnal water potential and gas exchange of Salix gordejevii distributed in fixed dunes and lowlands in Hunshandake Sandland, China, were compared. Compared to plants growing in lowlands, individuals of S. gordejevii in fixed dunes displayed much smaller leaf area (0.26 vs 0.70 cm(2)) and thicker leaves (leaf total thickness 148.59 vs 123.44 mum), together with heavier crust wax, denser hairs, and more compacted epidermal cells. Moreover, those growing in fixed dunes displayed stronger drought-resistance properties as evidenced by higher levels of proline (3.68 vs 0.20 mg g(-1) DW) and soluble sugar (17.24 vs 14.49%). Furthermore, S. gordejevii in fixed dunes demonstrated lower water potential and lower light compensation point (28.8 vs 51.9 micromol m(-2) s(-1)). Our findings suggest that morphological and/or anatomical plasticity in leaves has had great adaptive value for Salix in responding to deteriorating environments. The evidence provided here may facilitate the prediction of plant adaptation in community succession in sandy habitats.

DOI: 10.1007/s10265-009-0249-1
PubMed: 19536609

Links to Exploration step

pubmed:19536609

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.</title>
<author>
<name sortKey="Su, Hua" sort="Su, Hua" uniqKey="Su H" first="Hua" last="Su">Hua Su</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 100093, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yonggeng" sort="Li, Yonggeng" uniqKey="Li Y" first="Yonggeng" last="Li">Yonggeng Li</name>
</author>
<author>
<name sortKey="Lan, Zhenjiang" sort="Lan, Zhenjiang" uniqKey="Lan Z" first="Zhenjiang" last="Lan">Zhenjiang Lan</name>
</author>
<author>
<name sortKey="Xu, Hong" sort="Xu, Hong" uniqKey="Xu H" first="Hong" last="Xu">Hong Xu</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Wang, Bingxue" sort="Wang, Bingxue" uniqKey="Wang B" first="Bingxue" last="Wang">Bingxue Wang</name>
</author>
<author>
<name sortKey="Biswas, Dilip Kumar" sort="Biswas, Dilip Kumar" uniqKey="Biswas D" first="Dilip Kumar" last="Biswas">Dilip Kumar Biswas</name>
</author>
<author>
<name sortKey="Jiang, Gaoming" sort="Jiang, Gaoming" uniqKey="Jiang G" first="Gaoming" last="Jiang">Gaoming Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19536609</idno>
<idno type="pmid">19536609</idno>
<idno type="doi">10.1007/s10265-009-0249-1</idno>
<idno type="wicri:Area/Main/Corpus">001785</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001785</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.</title>
<author>
<name sortKey="Su, Hua" sort="Su, Hua" uniqKey="Su H" first="Hua" last="Su">Hua Su</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 100093, Beijing, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yonggeng" sort="Li, Yonggeng" uniqKey="Li Y" first="Yonggeng" last="Li">Yonggeng Li</name>
</author>
<author>
<name sortKey="Lan, Zhenjiang" sort="Lan, Zhenjiang" uniqKey="Lan Z" first="Zhenjiang" last="Lan">Zhenjiang Lan</name>
</author>
<author>
<name sortKey="Xu, Hong" sort="Xu, Hong" uniqKey="Xu H" first="Hong" last="Xu">Hong Xu</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Wang, Bingxue" sort="Wang, Bingxue" uniqKey="Wang B" first="Bingxue" last="Wang">Bingxue Wang</name>
</author>
<author>
<name sortKey="Biswas, Dilip Kumar" sort="Biswas, Dilip Kumar" uniqKey="Biswas D" first="Dilip Kumar" last="Biswas">Dilip Kumar Biswas</name>
</author>
<author>
<name sortKey="Jiang, Gaoming" sort="Jiang, Gaoming" uniqKey="Jiang G" first="Gaoming" last="Jiang">Gaoming Jiang</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant research</title>
<idno type="eISSN">1618-0860</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China (MeSH)</term>
<term>Gases (metabolism)</term>
<term>Geography (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Salix (metabolism)</term>
<term>Salix (physiology)</term>
<term>Soil (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gases</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>China</term>
<term>Geography</term>
<term>Soil</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To cope with adverse environments, the majority of indigenous plants in arid regions possess adaptive plasticity after long-term evolution. Leaf-level morphology, anatomy, biochemical properties, diurnal water potential and gas exchange of Salix gordejevii distributed in fixed dunes and lowlands in Hunshandake Sandland, China, were compared. Compared to plants growing in lowlands, individuals of S. gordejevii in fixed dunes displayed much smaller leaf area (0.26 vs 0.70 cm(2)) and thicker leaves (leaf total thickness 148.59 vs 123.44 mum), together with heavier crust wax, denser hairs, and more compacted epidermal cells. Moreover, those growing in fixed dunes displayed stronger drought-resistance properties as evidenced by higher levels of proline (3.68 vs 0.20 mg g(-1) DW) and soluble sugar (17.24 vs 14.49%). Furthermore, S. gordejevii in fixed dunes demonstrated lower water potential and lower light compensation point (28.8 vs 51.9 micromol m(-2) s(-1)). Our findings suggest that morphological and/or anatomical plasticity in leaves has had great adaptive value for Salix in responding to deteriorating environments. The evidence provided here may facilitate the prediction of plant adaptation in community succession in sandy habitats.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19536609</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>122</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant research</Title>
<ISOAbbreviation>J Plant Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.</ArticleTitle>
<Pagination>
<MedlinePgn>611-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10265-009-0249-1</ELocationID>
<Abstract>
<AbstractText>To cope with adverse environments, the majority of indigenous plants in arid regions possess adaptive plasticity after long-term evolution. Leaf-level morphology, anatomy, biochemical properties, diurnal water potential and gas exchange of Salix gordejevii distributed in fixed dunes and lowlands in Hunshandake Sandland, China, were compared. Compared to plants growing in lowlands, individuals of S. gordejevii in fixed dunes displayed much smaller leaf area (0.26 vs 0.70 cm(2)) and thicker leaves (leaf total thickness 148.59 vs 123.44 mum), together with heavier crust wax, denser hairs, and more compacted epidermal cells. Moreover, those growing in fixed dunes displayed stronger drought-resistance properties as evidenced by higher levels of proline (3.68 vs 0.20 mg g(-1) DW) and soluble sugar (17.24 vs 14.49%). Furthermore, S. gordejevii in fixed dunes demonstrated lower water potential and lower light compensation point (28.8 vs 51.9 micromol m(-2) s(-1)). Our findings suggest that morphological and/or anatomical plasticity in leaves has had great adaptive value for Salix in responding to deteriorating environments. The evidence provided here may facilitate the prediction of plant adaptation in community succession in sandy habitats.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 100093, Beijing, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yonggeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lan</LastName>
<ForeName>Zhenjiang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Bingxue</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Biswas</LastName>
<ForeName>Dilip Kumar</ForeName>
<Initials>DK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Gaoming</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Plant Res</MedlineTA>
<NlmUniqueID>9887853</NlmUniqueID>
<ISSNLinking>0918-9440</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005843" MajorTopicYN="N">Geography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19536609</ArticleId>
<ArticleId IdType="doi">10.1007/s10265-009-0249-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ambio. 2006 Aug;35(5):269-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16989513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):813-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Apr;30(4):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2008 May;121(3):311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18389173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(4):749-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cryobiology. 2006 Aug;53(1):58-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16696965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Jan;113(2):188-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 May;152(1):13-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17165094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Aug;100(2):325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1981 May;49(1):38-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):790-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001785 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001785 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19536609
   |texte=   Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19536609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020