Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial production host selection for converting second-generation feedstocks into bioproducts.

Identifieur interne : 001736 ( Main/Corpus ); précédent : 001735; suivant : 001737

Microbial production host selection for converting second-generation feedstocks into bioproducts.

Auteurs : Karl Rumbold ; Hugo J J. Van Buijsen ; Karin M. Overkamp ; Johan W. Van Groenestijn ; Peter J. Punt ; Mariët J. Van Der Werf

Source :

RBID : pubmed:19958560

English descriptors

Abstract

BACKGROUND

Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.

RESULTS

Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks.

CONCLUSION

Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic engineering. Instead of introducing multiple substrate utilization and detoxification routes to efficiently utilize lignocellulosic hydrolysates only one biosynthesis route forming the product of interest has to be engineered.


DOI: 10.1186/1475-2859-8-64
PubMed: 19958560
PubMed Central: PMC2795742

Links to Exploration step

pubmed:19958560

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial production host selection for converting second-generation feedstocks into bioproducts.</title>
<author>
<name sortKey="Rumbold, Karl" sort="Rumbold, Karl" uniqKey="Rumbold K" first="Karl" last="Rumbold">Karl Rumbold</name>
<affiliation>
<nlm:affiliation>Team Microbial Production Processes, TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands. karl.rumbold@wits.ac.za</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Buijsen, Hugo J J" sort="Van Buijsen, Hugo J J" uniqKey="Van Buijsen H" first="Hugo J J" last="Van Buijsen">Hugo J J. Van Buijsen</name>
</author>
<author>
<name sortKey="Overkamp, Karin M" sort="Overkamp, Karin M" uniqKey="Overkamp K" first="Karin M" last="Overkamp">Karin M. Overkamp</name>
</author>
<author>
<name sortKey="Van Groenestijn, Johan W" sort="Van Groenestijn, Johan W" uniqKey="Van Groenestijn J" first="Johan W" last="Van Groenestijn">Johan W. Van Groenestijn</name>
</author>
<author>
<name sortKey="Punt, Peter J" sort="Punt, Peter J" uniqKey="Punt P" first="Peter J" last="Punt">Peter J. Punt</name>
</author>
<author>
<name sortKey="Van Der Werf, Mariet J" sort="Van Der Werf, Mariet J" uniqKey="Van Der Werf M" first="Mariët J" last="Van Der Werf">Mariët J. Van Der Werf</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19958560</idno>
<idno type="pmid">19958560</idno>
<idno type="doi">10.1186/1475-2859-8-64</idno>
<idno type="pmc">PMC2795742</idno>
<idno type="wicri:Area/Main/Corpus">001736</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001736</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial production host selection for converting second-generation feedstocks into bioproducts.</title>
<author>
<name sortKey="Rumbold, Karl" sort="Rumbold, Karl" uniqKey="Rumbold K" first="Karl" last="Rumbold">Karl Rumbold</name>
<affiliation>
<nlm:affiliation>Team Microbial Production Processes, TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands. karl.rumbold@wits.ac.za</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Buijsen, Hugo J J" sort="Van Buijsen, Hugo J J" uniqKey="Van Buijsen H" first="Hugo J J" last="Van Buijsen">Hugo J J. Van Buijsen</name>
</author>
<author>
<name sortKey="Overkamp, Karin M" sort="Overkamp, Karin M" uniqKey="Overkamp K" first="Karin M" last="Overkamp">Karin M. Overkamp</name>
</author>
<author>
<name sortKey="Van Groenestijn, Johan W" sort="Van Groenestijn, Johan W" uniqKey="Van Groenestijn J" first="Johan W" last="Van Groenestijn">Johan W. Van Groenestijn</name>
</author>
<author>
<name sortKey="Punt, Peter J" sort="Punt, Peter J" uniqKey="Punt P" first="Peter J" last="Punt">Peter J. Punt</name>
</author>
<author>
<name sortKey="Van Der Werf, Mariet J" sort="Van Der Werf, Mariet J" uniqKey="Van Der Werf M" first="Mariët J" last="Van Der Werf">Mariët J. Van Der Werf</name>
</author>
</analytic>
<series>
<title level="j">Microbial cell factories</title>
<idno type="eISSN">1475-2859</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aspergillus niger (growth & development)</term>
<term>Biomass (MeSH)</term>
<term>Corynebacterium glutamicum (growth & development)</term>
<term>Escherichia coli (growth & development)</term>
<term>Fermentation (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (pharmacology)</term>
<term>Pichia (growth & development)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Trichoderma (growth & development)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Aspergillus niger</term>
<term>Corynebacterium glutamicum</term>
<term>Escherichia coli</term>
<term>Pichia</term>
<term>Saccharomyces cerevisiae</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Fermentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic engineering. Instead of introducing multiple substrate utilization and detoxification routes to efficiently utilize lignocellulosic hydrolysates only one biosynthesis route forming the product of interest has to be engineered.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19958560</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1475-2859</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Microbial cell factories</Title>
<ISOAbbreviation>Microb Cell Fact</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial production host selection for converting second-generation feedstocks into bioproducts.</ArticleTitle>
<Pagination>
<MedlinePgn>64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1475-2859-8-64</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic engineering. Instead of introducing multiple substrate utilization and detoxification routes to efficiently utilize lignocellulosic hydrolysates only one biosynthesis route forming the product of interest has to be engineered.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rumbold</LastName>
<ForeName>Karl</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Team Microbial Production Processes, TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands. karl.rumbold@wits.ac.za</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Buijsen</LastName>
<ForeName>Hugo J J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Overkamp</LastName>
<ForeName>Karin M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Groenestijn</LastName>
<ForeName>Johan W</ForeName>
<Initials>JW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Punt</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Werf</LastName>
<ForeName>Mariët J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microb Cell Fact</MedlineTA>
<NlmUniqueID>101139812</NlmUniqueID>
<ISSNLinking>1475-2859</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001234" MajorTopicYN="N">Aspergillus niger</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048230" MajorTopicYN="N">Corynebacterium glutamicum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="Y">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010843" MajorTopicYN="N">Pichia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014242" MajorTopicYN="N">Trichoderma</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19958560</ArticleId>
<ArticleId IdType="pii">1475-2859-8-64</ArticleId>
<ArticleId IdType="doi">10.1186/1475-2859-8-64</ArticleId>
<ArticleId IdType="pmc">PMC2795742</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Yeast Res. 2003 Oct;4(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14554198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(15):4881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17545317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Sep 18;273(38):24529-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1979 Feb;7(1):82-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">374156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11499926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2005 Sep;100(3):260-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Feb 15;78(4):1272-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2008 Nov;1(6):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 Nov 1;370(1):17-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Sep 15;78(18):6573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16970336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18478439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2008 Jun 11;1(1):12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001736 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001736 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19958560
   |texte=   Microbial production host selection for converting second-generation feedstocks into bioproducts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19958560" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020