Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).

Identifieur interne : 001295 ( Main/Corpus ); précédent : 001294; suivant : 001296

Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).

Auteurs : Jingjing Liu ; Tongming Yin ; Ning Ye ; Yingnan Chen ; Tingting Yin ; Min Liu ; Danial Hassani

Source :

RBID : pubmed:23560075

English descriptors

Abstract

BACKGROUND

The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes.

RESULTS

Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies.

CONCLUSIONS

In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp.


DOI: 10.1371/journal.pone.0060181
PubMed: 23560075
PubMed Central: PMC3613397

Links to Exploration step

pubmed:23560075

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).</title>
<author>
<name sortKey="Liu, Jingjing" sort="Liu, Jingjing" uniqKey="Liu J" first="Jingjing" last="Liu">Jingjing Liu</name>
<affiliation>
<nlm:affiliation>Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
</author>
<author>
<name sortKey="Yin, Tingting" sort="Yin, Tingting" uniqKey="Yin T" first="Tingting" last="Yin">Tingting Yin</name>
</author>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
</author>
<author>
<name sortKey="Hassani, Danial" sort="Hassani, Danial" uniqKey="Hassani D" first="Danial" last="Hassani">Danial Hassani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23560075</idno>
<idno type="pmid">23560075</idno>
<idno type="doi">10.1371/journal.pone.0060181</idno>
<idno type="pmc">PMC3613397</idno>
<idno type="wicri:Area/Main/Corpus">001295</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001295</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).</title>
<author>
<name sortKey="Liu, Jingjing" sort="Liu, Jingjing" uniqKey="Liu J" first="Jingjing" last="Liu">Jingjing Liu</name>
<affiliation>
<nlm:affiliation>Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
</author>
<author>
<name sortKey="Yin, Tingting" sort="Yin, Tingting" uniqKey="Yin T" first="Tingting" last="Yin">Tingting Yin</name>
</author>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
</author>
<author>
<name sortKey="Hassani, Danial" sort="Hassani, Danial" uniqKey="Hassani D" first="Danial" last="Hassani">Danial Hassani</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosomes, Plant (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Flowers (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Salix (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Flowers</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Databases, Genetic</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Microsatellite Repeats</term>
<term>Molecular Sequence Annotation</term>
<term>Sequence Analysis, DNA</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23560075</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).</ArticleTitle>
<Pagination>
<MedlinePgn>e60181</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0060181</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jingjing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yingnan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hassani</LastName>
<ForeName>Danial</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23560075</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0060181</ArticleId>
<ArticleId IdType="pii">PONE-D-13-03229</ArticleId>
<ArticleId IdType="pmc">PMC3613397</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2011;11:167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jun;70(5):879-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22324449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2002 Feb;88(2):94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Mar;151(3):1173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004;16 Suppl:S61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D262-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Aug;278(2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Mar;151(3):1187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2011;12:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22171578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21609489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jul 1;19(10):1275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 1958;9:217-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13520443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22233149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1538-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Sep;20(9):432-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Dec;6(12):1775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7866023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Mar;4(3):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1498595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Apr;3(4):274-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Aug;17(16):3599-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2003 Jan 15;12(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 May;4(5):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12728279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Sep;5(5):1020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Dec;10(12):2055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Aug;95(2):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Dec;5(12):e1000598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20011106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Aug;1(8):737-744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Oct;10(4):679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Oct;7(10):1583-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7580253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21483681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Oct;12(4):805-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9375394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001295 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001295 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23560075
   |texte=   Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23560075" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020