Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

Identifieur interne : 001230 ( Main/Corpus ); précédent : 001229; suivant : 001231

Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

Auteurs : Terrence H. Bell ; Saad El-Din Hassan ; Aurélien Lauron-Moreau ; Fahad Al-Otaibi ; Mohamed Hijri ; Etienne Yergeau ; Marc St-Arnaud

Source :

RBID : pubmed:23985744

English descriptors

Abstract

Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.

DOI: 10.1038/ismej.2013.149
PubMed: 23985744
PubMed Central: PMC3906811

Links to Exploration step

pubmed:23985744

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.</title>
<author>
<name sortKey="Bell, Terrence H" sort="Bell, Terrence H" uniqKey="Bell T" first="Terrence H" last="Bell">Terrence H. Bell</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="El Din Hassan, Saad" sort="El Din Hassan, Saad" uniqKey="El Din Hassan S" first="Saad" last="El-Din Hassan">Saad El-Din Hassan</name>
<affiliation>
<nlm:affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lauron Moreau, Aurelien" sort="Lauron Moreau, Aurelien" uniqKey="Lauron Moreau A" first="Aurélien" last="Lauron-Moreau">Aurélien Lauron-Moreau</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Otaibi, Fahad" sort="Al Otaibi, Fahad" uniqKey="Al Otaibi F" first="Fahad" last="Al-Otaibi">Fahad Al-Otaibi</name>
<affiliation>
<nlm:affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Soil Science, King Saud University, Riyadh, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:23985744</idno>
<idno type="pmid">23985744</idno>
<idno type="doi">10.1038/ismej.2013.149</idno>
<idno type="pmc">PMC3906811</idno>
<idno type="wicri:Area/Main/Corpus">001230</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001230</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.</title>
<author>
<name sortKey="Bell, Terrence H" sort="Bell, Terrence H" uniqKey="Bell T" first="Terrence H" last="Bell">Terrence H. Bell</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="El Din Hassan, Saad" sort="El Din Hassan, Saad" uniqKey="El Din Hassan S" first="Saad" last="El-Din Hassan">Saad El-Din Hassan</name>
<affiliation>
<nlm:affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lauron Moreau, Aurelien" sort="Lauron Moreau, Aurelien" uniqKey="Lauron Moreau A" first="Aurélien" last="Lauron-Moreau">Aurélien Lauron-Moreau</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Otaibi, Fahad" sort="Al Otaibi, Fahad" uniqKey="Al Otaibi F" first="Fahad" last="Al-Otaibi">Fahad Al-Otaibi</name>
<affiliation>
<nlm:affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Soil Science, King Saud University, Riyadh, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation>
<nlm:affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>DNA, Ribosomal Spacer (genetics)</term>
<term>Fungi (classification)</term>
<term>Fungi (genetics)</term>
<term>Fungi (metabolism)</term>
<term>Fungi (physiology)</term>
<term>Hydrocarbons (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rhizosphere (MeSH)</term>
<term>Salix (classification)</term>
<term>Salix (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (chemistry)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal Spacer</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Hydrocarbons</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Phylogeny</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">23985744</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.</ArticleTitle>
<Pagination>
<MedlinePgn>331-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2013.149</ELocationID>
<Abstract>
<AbstractText>Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bell</LastName>
<ForeName>Terrence H</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El-Din Hassan</LastName>
<ForeName>Saad</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lauron-Moreau</LastName>
<ForeName>Aurélien</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Al-Otaibi</LastName>
<ForeName>Fahad</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>1] Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada [2] Department of Soil Science, King Saud University, Riyadh, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hijri</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yergeau</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000000271123425</Identifier>
<AffiliationInfo>
<Affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St-Arnaud</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021903">DNA, Ribosomal Spacer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006838">Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021903" MajorTopicYN="N">DNA, Ribosomal Spacer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006838" MajorTopicYN="N">Hydrocarbons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="Y">Salix</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23985744</ArticleId>
<ArticleId IdType="pii">ismej2013149</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2013.149</ArticleId>
<ArticleId IdType="pmc">PMC3906811</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Mar;75(6):1589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2013 Jul;85(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23488635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):286-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20524992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Apr;7(4):830-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 May;70(5):2966-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Mar;13(3):722-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jun;6(6):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2469-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Mar;5(3):403-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Oct;4(10):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1658-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 1;27(3):431-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(12):4063-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Mar;9(3):177-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21297669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2008 Mar;27(3):591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Dec;19(24):5555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21050295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:15-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Aug 02;12:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22852578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Mar;63(3):350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Nov 15;2:217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22131985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12925-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2013 Mar 27;2(2):203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27137372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jun;77(12):4163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2011 Jul;320(2):87-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21535100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2013 Jan 15;443:766-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Aug;59(4-5):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Feb;10(2):534-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23119032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2093-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:363-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19514845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2008 May;27(5):1039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Jan;6(1):136-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 Jul;93(7):1550-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22919902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e27310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Sep;2(9):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Feb;6(2):343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 27;332(6033):1097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jun;7(6):1200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23389106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Apr;96(4):771-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2011 Feb 23;7(1):75-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2005 Jul;7(7):909-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15946288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Jun;6(6):574-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15142245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23985744
   |texte=   Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23985744" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020