Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial expression profiles in the rhizosphere of willows depend on soil contamination.

Identifieur interne : 001219 ( Main/Corpus ); précédent : 001218; suivant : 001220

Microbial expression profiles in the rhizosphere of willows depend on soil contamination.

Auteurs : Etienne Yergeau ; Sylvie Sanschagrin ; Christine Maynard ; Marc St-Arnaud ; Charles W. Greer

Source :

RBID : pubmed:24067257

English descriptors

Abstract

The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.

DOI: 10.1038/ismej.2013.163
PubMed: 24067257
PubMed Central: PMC3906822

Links to Exploration step

pubmed:24067257

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial expression profiles in the rhizosphere of willows depend on soil contamination.</title>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanschagrin, Sylvie" sort="Sanschagrin, Sylvie" uniqKey="Sanschagrin S" first="Sylvie" last="Sanschagrin">Sylvie Sanschagrin</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maynard, Christine" sort="Maynard, Christine" uniqKey="Maynard C" first="Christine" last="Maynard">Christine Maynard</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation>
<nlm:affiliation>Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Greer, Charles W" sort="Greer, Charles W" uniqKey="Greer C" first="Charles W" last="Greer">Charles W. Greer</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24067257</idno>
<idno type="pmid">24067257</idno>
<idno type="doi">10.1038/ismej.2013.163</idno>
<idno type="pmc">PMC3906822</idno>
<idno type="wicri:Area/Main/Corpus">001219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial expression profiles in the rhizosphere of willows depend on soil contamination.</title>
<author>
<name sortKey="Yergeau, Etienne" sort="Yergeau, Etienne" uniqKey="Yergeau E" first="Etienne" last="Yergeau">Etienne Yergeau</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanschagrin, Sylvie" sort="Sanschagrin, Sylvie" uniqKey="Sanschagrin S" first="Sylvie" last="Sanschagrin">Sylvie Sanschagrin</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maynard, Christine" sort="Maynard, Christine" uniqKey="Maynard C" first="Christine" last="Maynard">Christine Maynard</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation>
<nlm:affiliation>Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Greer, Charles W" sort="Greer, Charles W" uniqKey="Greer C" first="Charles W" last="Greer">Charles W. Greer</name>
<affiliation>
<nlm:affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Hydrocarbons (metabolism)</term>
<term>Nitrogen Cycle (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rhizosphere (MeSH)</term>
<term>Salix (microbiology)</term>
<term>Salix (physiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Soil Pollutants (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Carbon</term>
<term>Hydrocarbons</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Nitrogen Cycle</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Gene Expression Profiling</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24067257</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial expression profiles in the rhizosphere of willows depend on soil contamination.</ArticleTitle>
<Pagination>
<MedlinePgn>344-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2013.163</ELocationID>
<Abstract>
<AbstractText>The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yergeau</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000000271123425</Identifier>
<AffiliationInfo>
<Affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanschagrin</LastName>
<ForeName>Sylvie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maynard</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St-Arnaud</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greer</LastName>
<ForeName>Charles W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006838">Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006838" MajorTopicYN="N">Hydrocarbons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="N">Nitrogen Cycle</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24067257</ArticleId>
<ArticleId IdType="pii">ismej2013163</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2013.163</ArticleId>
<ArticleId IdType="pmc">PMC3906822</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jan;4(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Nov;10(11):3082-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jul;4(7):896-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Apr;72(4):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Oct;67(10):4742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11571180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 1995 Jul 1;29(7):318A-23A</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22667744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jul;69(7):3758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12839741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(9):R179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17784941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2002 Sep;48(9):975-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12222793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 May;13(5):572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10796024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Dec;175(24):7856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7504664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Dec;7(6):602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):2921-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Feb;79(3):874-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6278499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Mar;29(3):423-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:15-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Oct;57(10):2873-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1746947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Nov;78(21):7626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Mar;70(3):1297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15006746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Jul;1(3):215-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8500-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 May 30;164(2-3):646-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jul;59(7):2056-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2010 Mar;56(3):236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jun 21;12:116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22720735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 19;9:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Jul;68(7):3328-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;36(3):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3908220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Feb;27(2):313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Mar;21(3):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(5):1183-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21183664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2001 Feb;4(1):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2003 Jul;29(4):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Mar;63(3):372-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Oct 21;12(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Dec;7(12):2248-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23864127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Aug;71(8):4203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Jun;72(3):313-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20370828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2006 May;56(Pt 5):983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):331-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23985744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1489-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 May;22(5):583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2009 Feb;11(2):200-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28134000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2007 May 07;36(3):904-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2012 Mar;30(3):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Sep;2(9):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jun;7(6):1200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23389106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Oct;5(5):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 May 21;284(5418):1318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2009 Apr;59(Pt 4):850-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:461-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):6-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Nov-Dec;30(6):1911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Dec;56(4):677-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1480115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:643-668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24067257
   |texte=   Microbial expression profiles in the rhizosphere of willows depend on soil contamination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24067257" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020