Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

Identifieur interne : 001018 ( Main/Corpus ); précédent : 001017; suivant : 001019

Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

Auteurs : Anne M. Borland ; Stan D. Wullschleger ; David J. Weston ; James Hartwell ; Gerald A. Tuskan ; Xiaohan Yang ; John C. Cushman

Source :

RBID : pubmed:25366937

English descriptors

Abstract

Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.

DOI: 10.1111/pce.12479
PubMed: 25366937

Links to Exploration step

pubmed:25366937

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</title>
<author>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
<affiliation>
<nlm:affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D" last="Wullschleger">Stan D. Wullschleger</name>
<affiliation>
<nlm:affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartwell, James" sort="Hartwell, James" uniqKey="Hartwell J" first="James" last="Hartwell">James Hartwell</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cushman, John C" sort="Cushman, John C" uniqKey="Cushman J" first="John C" last="Cushman">John C. Cushman</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25366937</idno>
<idno type="pmid">25366937</idno>
<idno type="doi">10.1111/pce.12479</idno>
<idno type="wicri:Area/Main/Corpus">001018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</title>
<author>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
<affiliation>
<nlm:affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D" last="Wullschleger">Stan D. Wullschleger</name>
<affiliation>
<nlm:affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartwell, James" sort="Hartwell, James" uniqKey="Hartwell J" first="James" last="Hartwell">James Hartwell</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation>
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cushman, John C" sort="Cushman, John C" uniqKey="Cushman J" first="John C" last="Cushman">John C. Cushman</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Agriculture (trends)</term>
<term>Climate Change (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Forestry (methods)</term>
<term>Genetic Engineering (methods)</term>
<term>Plant Breeding (methods)</term>
<term>Populus (MeSH)</term>
<term>Salix (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (metabolism)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
<term>Forestry</term>
<term>Genetic Engineering</term>
<term>Plant Breeding</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Droughts</term>
<term>Ecosystem</term>
<term>Populus</term>
<term>Salix</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25366937</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</ArticleTitle>
<Pagination>
<MedlinePgn>1833-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12479</ELocationID>
<Abstract>
<AbstractText>Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. </AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borland</LastName>
<ForeName>Anne M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wullschleger</LastName>
<ForeName>Stan D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weston</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartwell</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cushman</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/F009313/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="N">Plant Breeding</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CO2</Keyword>
<Keyword MajorTopicYN="N">carbon reactions</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">global climate change</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">stomata</Keyword>
<Keyword MajorTopicYN="N">water relations</Keyword>
<Keyword MajorTopicYN="N">water-use efficiency</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25366937</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12479</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25366937
   |texte=   Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25366937" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020