Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

Identifieur interne : 000E05 ( Main/Corpus ); précédent : 000E04; suivant : 000E06

Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

Auteurs : Soohaeng Yoo Willow ; Michael A. Salim ; Kwang S. Kim ; So Hirata

Source :

RBID : pubmed:26400690

Abstract

A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation.

DOI: 10.1038/srep14358
PubMed: 26400690
PubMed Central: PMC4585828

Links to Exploration step

pubmed:26400690

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.</title>
<author>
<name sortKey="Willow, Soohaeng Yoo" sort="Willow, Soohaeng Yoo" uniqKey="Willow S" first="Soohaeng Yoo" last="Willow">Soohaeng Yoo Willow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salim, Michael A" sort="Salim, Michael A" uniqKey="Salim M" first="Michael A" last="Salim">Michael A. Salim</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kwang S" sort="Kim, Kwang S" uniqKey="Kim K" first="Kwang S" last="Kim">Kwang S. Kim</name>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirata, So" sort="Hirata, So" uniqKey="Hirata S" first="So" last="Hirata">So Hirata</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26400690</idno>
<idno type="pmid">26400690</idno>
<idno type="doi">10.1038/srep14358</idno>
<idno type="pmc">PMC4585828</idno>
<idno type="wicri:Area/Main/Corpus">000E05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.</title>
<author>
<name sortKey="Willow, Soohaeng Yoo" sort="Willow, Soohaeng Yoo" uniqKey="Willow S" first="Soohaeng Yoo" last="Willow">Soohaeng Yoo Willow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salim, Michael A" sort="Salim, Michael A" uniqKey="Salim M" first="Michael A" last="Salim">Michael A. Salim</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kwang S" sort="Kim, Kwang S" uniqKey="Kim K" first="Kwang S" last="Kim">Kwang S. Kim</name>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirata, So" sort="Hirata, So" uniqKey="Hirata S" first="So" last="Hirata">So Hirata</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26400690</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.</ArticleTitle>
<Pagination>
<MedlinePgn>14358</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep14358</ELocationID>
<Abstract>
<AbstractText>A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Willow</LastName>
<ForeName>Soohaeng Yoo</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salim</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Kwang S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirata</LastName>
<ForeName>So</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26400690</ArticleId>
<ArticleId IdType="pii">srep14358</ArticleId>
<ArticleId IdType="doi">10.1038/srep14358</ArticleId>
<ArticleId IdType="pmc">PMC4585828</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Phys. 2011 Mar 28;134(12):121105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2008 Feb 21;128(7):074506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2014 Dec 9;10(12):5297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A Gen Phys. 1986 Apr;33(4):2679-2693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9896953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2013 Feb 21;138(7):074506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23445023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Sep 15;121(11):5400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15352834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2012 Jan 11;112(1):632-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Sep 13;116(36):11247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22894550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem Lett. 2014 Sep 4;5(17):3066-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26278261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2006 Aug 3;110(30):9469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16869698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2011 May 12;115(18):5545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2011 Jan 21;106(3):037801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21405300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2008 Jun 14;128(22):224511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18554033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Dec 11;8(12):5008-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26593192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Sep 1;121(9):3973-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15332943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Jan 8;120(2):823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15267918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2008 Jul 4;101(1):017801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18764152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2005 May 8;122(18):184509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2009 Jun 14;130(22):221102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19530755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2011 Sep 28;135(12):124712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 May 7;284(5416):945-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2014 Sep 16;47(9):2721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24754304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2013 Aug 29;117(34):9956-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 2;315(5816):1249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Feb 7;275(5301):814-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9012344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2005 Oct 27;109(42):9424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Apr 30;113(17):5702-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19385690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2005 Jun 15;122(23):234511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16008466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26400690
   |texte=   Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26400690" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020