Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?

Identifieur interne : 000D08 ( Main/Corpus ); précédent : 000D07; suivant : 000D09

Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?

Auteurs : Soohaeng Yoo Willow ; Xiao Cheng Zeng ; Sotiris S. Xantheas ; Kwang S. Kim ; So Hirata

Source :

RBID : pubmed:26821830

Abstract

Density functional theory (DFT) with a dispersionless generalized gradient approximation (GGA) needs much higher temperature and pressure than the ambient conditions to maintain water in the liquid phase at the correct (1 g/cm(3)) density during first-principles simulations. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water require lower temperature and pressure than DFT/GGA to keep water liquid. Here we present a unifying explanation of these trends derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the different temperatures and pressures between DFT/GGA and MP2 at which the simulated water displays the experimentally observed liquid structure under the ambient conditions can be largely explained by their differences in polarizability and dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for DFT-water to be liquid. MP2 gives a stronger dispersion interaction and thus shorter intermolecular distances than dispersionless DFT/GGA, which is why MP2-water is denser than DFT-water under the same external pressure.

DOI: 10.1021/acs.jpclett.5b02430
PubMed: 26821830

Links to Exploration step

pubmed:26821830

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?</title>
<author>
<name sortKey="Willow, Soohaeng Yoo" sort="Willow, Soohaeng Yoo" uniqKey="Willow S" first="Soohaeng Yoo" last="Willow">Soohaeng Yoo Willow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Xiao Cheng" sort="Zeng, Xiao Cheng" uniqKey="Zeng X" first="Xiao Cheng" last="Zeng">Xiao Cheng Zeng</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Nebraska at Lincoln , 536 Hamilton Hall, Lincoln, Nebraska 68588, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xantheas, Sotiris S" sort="Xantheas, Sotiris S" uniqKey="Xantheas S" first="Sotiris S" last="Xantheas">Sotiris S. Xantheas</name>
<affiliation>
<nlm:affiliation>Physical Sciences Division, Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kwang S" sort="Kim, Kwang S" uniqKey="Kim K" first="Kwang S" last="Kim">Kwang S. Kim</name>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirata, So" sort="Hirata, So" uniqKey="Hirata S" first="So" last="Hirata">So Hirata</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26821830</idno>
<idno type="pmid">26821830</idno>
<idno type="doi">10.1021/acs.jpclett.5b02430</idno>
<idno type="wicri:Area/Main/Corpus">000D08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?</title>
<author>
<name sortKey="Willow, Soohaeng Yoo" sort="Willow, Soohaeng Yoo" uniqKey="Willow S" first="Soohaeng Yoo" last="Willow">Soohaeng Yoo Willow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Xiao Cheng" sort="Zeng, Xiao Cheng" uniqKey="Zeng X" first="Xiao Cheng" last="Zeng">Xiao Cheng Zeng</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Nebraska at Lincoln , 536 Hamilton Hall, Lincoln, Nebraska 68588, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xantheas, Sotiris S" sort="Xantheas, Sotiris S" uniqKey="Xantheas S" first="Sotiris S" last="Xantheas">Sotiris S. Xantheas</name>
<affiliation>
<nlm:affiliation>Physical Sciences Division, Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kwang S" sort="Kim, Kwang S" uniqKey="Kim K" first="Kwang S" last="Kim">Kwang S. Kim</name>
<affiliation>
<nlm:affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirata, So" sort="Hirata, So" uniqKey="Hirata S" first="So" last="Hirata">So Hirata</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry letters</title>
<idno type="eISSN">1948-7185</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Density functional theory (DFT) with a dispersionless generalized gradient approximation (GGA) needs much higher temperature and pressure than the ambient conditions to maintain water in the liquid phase at the correct (1 g/cm(3)) density during first-principles simulations. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water require lower temperature and pressure than DFT/GGA to keep water liquid. Here we present a unifying explanation of these trends derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the different temperatures and pressures between DFT/GGA and MP2 at which the simulated water displays the experimentally observed liquid structure under the ambient conditions can be largely explained by their differences in polarizability and dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for DFT-water to be liquid. MP2 gives a stronger dispersion interaction and thus shorter intermolecular distances than dispersionless DFT/GGA, which is why MP2-water is denser than DFT-water under the same external pressure. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26821830</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1948-7185</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry letters</Title>
<ISOAbbreviation>J Phys Chem Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?</ArticleTitle>
<Pagination>
<MedlinePgn>680-4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jpclett.5b02430</ELocationID>
<Abstract>
<AbstractText>Density functional theory (DFT) with a dispersionless generalized gradient approximation (GGA) needs much higher temperature and pressure than the ambient conditions to maintain water in the liquid phase at the correct (1 g/cm(3)) density during first-principles simulations. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water require lower temperature and pressure than DFT/GGA to keep water liquid. Here we present a unifying explanation of these trends derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the different temperatures and pressures between DFT/GGA and MP2 at which the simulated water displays the experimentally observed liquid structure under the ambient conditions can be largely explained by their differences in polarizability and dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for DFT-water to be liquid. MP2 gives a stronger dispersion interaction and thus shorter intermolecular distances than dispersionless DFT/GGA, which is why MP2-water is denser than DFT-water under the same external pressure. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Willow</LastName>
<ForeName>Soohaeng Yoo</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Xiao Cheng</ForeName>
<Initials>XC</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Nebraska at Lincoln , 536 Hamilton Hall, Lincoln, Nebraska 68588, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xantheas</LastName>
<ForeName>Sotiris S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Physical Sciences Division, Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Kwang S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirata</LastName>
<ForeName>So</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem Lett</MedlineTA>
<NlmUniqueID>101526034</NlmUniqueID>
<ISSNLinking>1948-7185</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26821830</ArticleId>
<ArticleId IdType="doi">10.1021/acs.jpclett.5b02430</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26821830
   |texte=   Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26821830" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020