Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress.

Identifieur interne : 000907 ( Main/Corpus ); précédent : 000906; suivant : 000908

Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress.

Auteurs : Aymeric Yanitch ; Nicholas J B. Brereton ; Emmanuel Gonzalez ; Michel Labrecque ; Simon Joly ; Frederic E. Pitre

Source :

RBID : pubmed:28702037

Abstract

Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. 'Fish Creek' for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production.

DOI: 10.3389/fpls.2017.01115
PubMed: 28702037
PubMed Central: PMC5487440

Links to Exploration step

pubmed:28702037

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic Response of Purple Willow (
<i>Salix purpurea</i>
) to Arsenic Stress.</title>
<author>
<name sortKey="Yanitch, Aymeric" sort="Yanitch, Aymeric" uniqKey="Yanitch A" first="Aymeric" last="Yanitch">Aymeric Yanitch</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brereton, Nicholas J B" sort="Brereton, Nicholas J B" uniqKey="Brereton N" first="Nicholas J B" last="Brereton">Nicholas J B. Brereton</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Emmanuel" sort="Gonzalez, Emmanuel" uniqKey="Gonzalez E" first="Emmanuel" last="Gonzalez">Emmanuel Gonzalez</name>
<affiliation>
<nlm:affiliation>Canadian Centre for Computational Genomics, C3G Montreal Node, McGill University and Genome Quebec Innovation CentreMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Labrecque, Michel" sort="Labrecque, Michel" uniqKey="Labrecque M" first="Michel" last="Labrecque">Michel Labrecque</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joly, Simon" sort="Joly, Simon" uniqKey="Joly S" first="Simon" last="Joly">Simon Joly</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitre, Frederic E" sort="Pitre, Frederic E" uniqKey="Pitre F" first="Frederic E" last="Pitre">Frederic E. Pitre</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28702037</idno>
<idno type="pmid">28702037</idno>
<idno type="doi">10.3389/fpls.2017.01115</idno>
<idno type="pmc">PMC5487440</idno>
<idno type="wicri:Area/Main/Corpus">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic Response of Purple Willow (
<i>Salix purpurea</i>
) to Arsenic Stress.</title>
<author>
<name sortKey="Yanitch, Aymeric" sort="Yanitch, Aymeric" uniqKey="Yanitch A" first="Aymeric" last="Yanitch">Aymeric Yanitch</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brereton, Nicholas J B" sort="Brereton, Nicholas J B" uniqKey="Brereton N" first="Nicholas J B" last="Brereton">Nicholas J B. Brereton</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Emmanuel" sort="Gonzalez, Emmanuel" uniqKey="Gonzalez E" first="Emmanuel" last="Gonzalez">Emmanuel Gonzalez</name>
<affiliation>
<nlm:affiliation>Canadian Centre for Computational Genomics, C3G Montreal Node, McGill University and Genome Quebec Innovation CentreMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Labrecque, Michel" sort="Labrecque, Michel" uniqKey="Labrecque M" first="Michel" last="Labrecque">Michel Labrecque</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joly, Simon" sort="Joly, Simon" uniqKey="Joly S" first="Simon" last="Joly">Simon Joly</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitre, Frederic E" sort="Pitre, Frederic E" uniqKey="Pitre F" first="Frederic E" last="Pitre">Frederic E. Pitre</name>
<affiliation>
<nlm:affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Montreal Botanical GardenMontréal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of
<i>Salix purpurea</i>
cv. 'Fish Creek' for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider
<i>Salix</i>
ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28702037</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic Response of Purple Willow (
<i>Salix purpurea</i>
) to Arsenic Stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1115</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.01115</ELocationID>
<Abstract>
<AbstractText>Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of
<i>Salix purpurea</i>
cv. 'Fish Creek' for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider
<i>Salix</i>
ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yanitch</LastName>
<ForeName>Aymeric</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brereton</LastName>
<ForeName>Nicholas J B</ForeName>
<Initials>NJB</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gonzalez</LastName>
<ForeName>Emmanuel</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Canadian Centre for Computational Genomics, C3G Montreal Node, McGill University and Genome Quebec Innovation CentreMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Labrecque</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Montreal Botanical GardenMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Joly</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Montreal Botanical GardenMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pitre</LastName>
<ForeName>Frederic E</ForeName>
<Initials>FE</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, University of MontrealMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Montreal Botanical GardenMontréal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RNA-seq</Keyword>
<Keyword MajorTopicYN="N">Salix</Keyword>
<Keyword MajorTopicYN="N">abiotic stress tolerance</Keyword>
<Keyword MajorTopicYN="N">arsenic</Keyword>
<Keyword MajorTopicYN="N">phytoremediation</Keyword>
<Keyword MajorTopicYN="N">trace elements</Keyword>
<Keyword MajorTopicYN="N">transcriptomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28702037</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.01115</ArticleId>
<ArticleId IdType="pmc">PMC5487440</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Jun;12(3):364-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Apr;122(4):1171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1035-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Jun;22(12):8866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):280-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 Mar;21(6):4759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24363055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 12;448(7150):209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 2013 Oct;43(9):711-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24040994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010;45(5):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20390904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Sep;14(9):512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2013 Dec;91(6):652-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24084979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22098145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):3-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27002060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2008 Nov-Dec;19(6):520-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 16;10(4):e0121965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Sep 1;563-564:796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26765508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25331872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):777-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1941 Apr;16(2):327-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1494-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Jul 02;5:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22748135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Oct 12;15:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Nov;20(11):1140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2002 Aug 16;58(1):201-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18968746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2071-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):1080-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):1123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20163552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18453530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2010 Apr;79(5):513-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20223499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 Mar;21(5):3275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003 Jan;38(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12635819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2007 Apr;25(4):158-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17306392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2009 Nov;16(7):876-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19823886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2013;15(9):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23819283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jul;148(1):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2008 Jun 10;6:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):549-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26162428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2016 Sep 15;180:359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27257820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2008 Nov 07;7(9):33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2008 Nov-Dec;10(6):515-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2009 Aug 15;336(2):406-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1082-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Oct;8(10):843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11573087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:489-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2016;18(6):598-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26361089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 1;409(6820):579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11214308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2003 Jul;29(4):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705950</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28702037
   |texte=   Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28702037" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020