Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Salix SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.

Identifieur interne : 000306 ( Main/Corpus ); précédent : 000305; suivant : 000307

The Salix SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.

Auteurs : Liu Xiaoxia ; Jianguo Zhang ; Sui Jinkai ; Luo Ying ; Rao Guodong

Source :

RBID : pubmed:31850345

Abstract

Light signaling and cortical microtubule (MT) arrays are essential to the anisotropic growth of plant cells. Microtubule-associated proteins (MAPs) function as regulators that mediate plant cell expansion or elongation by altering the arrangements of the MT arrays. However, current understanding of the molecular mechanism of MAPs in relation to light to regulate cell expansion or elongation is limited. Here, we show that the MPS SPR1 is involved in light-regulated directional cell expansion by modulating microtubule arrangement. Overexpression of SmSPR1 in Arabidopsis results in right-handed helical orientation of hypocotyls in dark-grown etiolated seedlings, whereas the phenotype of transgenic plants was indistinguishable from those of wild-type plants under light conditions. Phenotypic characterization of the transgenic plants showed reduced anisotropic growth and left-handed helical MT arrays in etiolated hypocotyl cells. Protein interaction assays revealed that SPR1, CSN5A (subunits of COP9 signalosome, a negative regulator of photomorphogenesis), and ELONGATED HYPOCOTYL 5 (HY5, a transcription factor that promotes photomorphogenesis) interacted with each other in vivo. The phenotype of Arabidopsis AtSPR1-overexpressing transgenic lines was similar to that of SmSPR1-overexpressing transgenic plants, and overexpression of Salix SmSPR1 can rescue the spr1 mutant phenotype, thereby revealing the function of SPR1 in plants.

DOI: 10.3389/fcell.2019.00309
PubMed: 31850345
PubMed Central: PMC6892981

Links to Exploration step

pubmed:31850345

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The
<i>Salix</i>
SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.</title>
<author>
<name sortKey="Xiaoxia, Liu" sort="Xiaoxia, Liu" uniqKey="Xiaoxia L" first="Liu" last="Xiaoxia">Liu Xiaoxia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jinkai, Sui" sort="Jinkai, Sui" uniqKey="Jinkai S" first="Sui" last="Jinkai">Sui Jinkai</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ying, Luo" sort="Ying, Luo" uniqKey="Ying L" first="Luo" last="Ying">Luo Ying</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guodong, Rao" sort="Guodong, Rao" uniqKey="Guodong R" first="Rao" last="Guodong">Rao Guodong</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31850345</idno>
<idno type="pmid">31850345</idno>
<idno type="doi">10.3389/fcell.2019.00309</idno>
<idno type="pmc">PMC6892981</idno>
<idno type="wicri:Area/Main/Corpus">000306</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000306</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The
<i>Salix</i>
SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.</title>
<author>
<name sortKey="Xiaoxia, Liu" sort="Xiaoxia, Liu" uniqKey="Xiaoxia L" first="Liu" last="Xiaoxia">Liu Xiaoxia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jinkai, Sui" sort="Jinkai, Sui" uniqKey="Jinkai S" first="Sui" last="Jinkai">Sui Jinkai</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ying, Luo" sort="Ying, Luo" uniqKey="Ying L" first="Luo" last="Ying">Luo Ying</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guodong, Rao" sort="Guodong, Rao" uniqKey="Guodong R" first="Rao" last="Guodong">Rao Guodong</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in cell and developmental biology</title>
<idno type="ISSN">2296-634X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Light signaling and cortical microtubule (MT) arrays are essential to the anisotropic growth of plant cells. Microtubule-associated proteins (MAPs) function as regulators that mediate plant cell expansion or elongation by altering the arrangements of the MT arrays. However, current understanding of the molecular mechanism of MAPs in relation to light to regulate cell expansion or elongation is limited. Here, we show that the MPS SPR1 is involved in light-regulated directional cell expansion by modulating microtubule arrangement. Overexpression of
<i>SmSPR1</i>
in Arabidopsis results in right-handed helical orientation of hypocotyls in dark-grown etiolated seedlings, whereas the phenotype of transgenic plants was indistinguishable from those of wild-type plants under light conditions. Phenotypic characterization of the transgenic plants showed reduced anisotropic growth and left-handed helical MT arrays in etiolated hypocotyl cells. Protein interaction assays revealed that SPR1, CSN5A (subunits of COP9 signalosome, a negative regulator of photomorphogenesis), and ELONGATED HYPOCOTYL 5 (HY5, a transcription factor that promotes photomorphogenesis) interacted with each other
<i>in vivo</i>
. The phenotype of Arabidopsis
<i>AtSPR1</i>
-overexpressing transgenic lines was similar to that of
<i>SmSPR1</i>
-overexpressing transgenic plants, and overexpression of
<i>Salix SmSPR1</i>
can rescue the
<i>spr1</i>
mutant phenotype, thereby revealing the function of SPR1 in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31850345</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-634X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in cell and developmental biology</Title>
<ISOAbbreviation>Front Cell Dev Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The
<i>Salix</i>
SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.</ArticleTitle>
<Pagination>
<MedlinePgn>309</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fcell.2019.00309</ELocationID>
<Abstract>
<AbstractText>Light signaling and cortical microtubule (MT) arrays are essential to the anisotropic growth of plant cells. Microtubule-associated proteins (MAPs) function as regulators that mediate plant cell expansion or elongation by altering the arrangements of the MT arrays. However, current understanding of the molecular mechanism of MAPs in relation to light to regulate cell expansion or elongation is limited. Here, we show that the MPS SPR1 is involved in light-regulated directional cell expansion by modulating microtubule arrangement. Overexpression of
<i>SmSPR1</i>
in Arabidopsis results in right-handed helical orientation of hypocotyls in dark-grown etiolated seedlings, whereas the phenotype of transgenic plants was indistinguishable from those of wild-type plants under light conditions. Phenotypic characterization of the transgenic plants showed reduced anisotropic growth and left-handed helical MT arrays in etiolated hypocotyl cells. Protein interaction assays revealed that SPR1, CSN5A (subunits of COP9 signalosome, a negative regulator of photomorphogenesis), and ELONGATED HYPOCOTYL 5 (HY5, a transcription factor that promotes photomorphogenesis) interacted with each other
<i>in vivo</i>
. The phenotype of Arabidopsis
<i>AtSPR1</i>
-overexpressing transgenic lines was similar to that of
<i>SmSPR1</i>
-overexpressing transgenic plants, and overexpression of
<i>Salix SmSPR1</i>
can rescue the
<i>spr1</i>
mutant phenotype, thereby revealing the function of SPR1 in plants.</AbstractText>
<CopyrightInformation>Copyright © 2019 Xiaoxia, Zhang, Jinkai, Ying and Guodong.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiaoxia</LastName>
<ForeName>Liu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jianguo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jinkai</LastName>
<ForeName>Sui</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ying</LastName>
<ForeName>Luo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guodong</LastName>
<ForeName>Rao</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Cell Dev Biol</MedlineTA>
<NlmUniqueID>101630250</NlmUniqueID>
<ISSNLinking>2296-634X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salix matsudana</Keyword>
<Keyword MajorTopicYN="N">cell expansion</Keyword>
<Keyword MajorTopicYN="N">elongation</Keyword>
<Keyword MajorTopicYN="N">light regulation</Keyword>
<Keyword MajorTopicYN="N">microtubule</Keyword>
<Keyword MajorTopicYN="N">microtubule-associated proteins</Keyword>
<Keyword MajorTopicYN="N">protein interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31850345</ArticleId>
<ArticleId IdType="doi">10.3389/fcell.2019.00309</ArticleId>
<ArticleId IdType="pmc">PMC6892981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1506-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jul;75(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Oct 10;9(10):1353-1365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27435853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jan;25(1):134-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23362207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 6;342(6163):1245533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24200811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2016 Feb;62(1):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26497135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1740-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jul;23(7):2592-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21742992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):3933-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1178-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2012 Feb;249 Suppl 1:S59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 18;292(5520):1382-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2015 Apr 27;13:e0179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8033203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 29;6:20115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26823006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Apr 27;368(2):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17350042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):616-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 18;298(5593):608-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1202-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 May;8(5):202-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12758035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2000 Oct;127(20):4443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11003843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12321-12326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29087315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20966154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2015 Oct;34:46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25638281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Nov;12(11):514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Nov 15;11(22):2983-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Apr;47(4):513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Nov;26(11):4409-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25415978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26134166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 May;23(5):1889-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3412-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:215-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000306 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000306 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31850345
   |texte=   The Salix SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31850345" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020