Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix.

Identifieur interne : 000184 ( Main/Corpus ); précédent : 000183; suivant : 000185

Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix.

Auteurs : Wei Li ; Huaitong Wu ; Xiaoping Li ; Yingnan Chen ; Tongming Yin

Source :

RBID : pubmed:32377355

Abstract

Salix triandra belongs to section Amygdalinae in genus Salix, which is in a different section from the willow species in which sex determination has been well studied. Studying sex determination in distantly related willow species will help to clarify whether the sexes of different willows arise through a common sex determination system. For this purpose, we generated an intraspecific full-sib F1 population for S. triandra and constructed high-density genetic linkage maps for the crossing parents using restriction site-associated DNA sequencing and following a two-way pseudo-testcross strategy. With the established maps, the sex locus was positioned in linkage group XV only in the maternal map, and no sex linkage was detected in the paternal map. Consistent with previous findings in other willow species, our study showed that chromosome XV was the incipient sex chromosome and that females were the heterogametic sex in S. triandra. Therefore, sex in this willow species is also determined through a ZW sex determination system. We further performed fine mapping in the vicinity of the sex locus with SSR markers. By comparing the physical and genetic distances for the target interval encompassing the sex determination gene confined by SSRs, severe recombination repression was revealed in the sex determination region in the female map. The recombination rate in the confined interval encompassing the sex locus was approximately eight-fold lower than the genome-wide average. This study provides critical information relevant to sex determination in S. triandra.

DOI: 10.1038/s41438-020-0289-1
PubMed: 32377355
PubMed Central: PMC7193568

Links to Exploration step

pubmed:32377355

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fine mapping of the sex locus in
<i>Salix triandra</i>
confirms a consistent sex determination mechanism in genus
<i>Salix</i>
.</title>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Huaitong" sort="Wu, Huaitong" uniqKey="Wu H" first="Huaitong" last="Wu">Huaitong Wu</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaoping" sort="Li, Xiaoping" uniqKey="Li X" first="Xiaoping" last="Li">Xiaoping Li</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32377355</idno>
<idno type="pmid">32377355</idno>
<idno type="doi">10.1038/s41438-020-0289-1</idno>
<idno type="pmc">PMC7193568</idno>
<idno type="wicri:Area/Main/Corpus">000184</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fine mapping of the sex locus in
<i>Salix triandra</i>
confirms a consistent sex determination mechanism in genus
<i>Salix</i>
.</title>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Huaitong" sort="Wu, Huaitong" uniqKey="Wu H" first="Huaitong" last="Wu">Huaitong Wu</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaoping" sort="Li, Xiaoping" uniqKey="Li X" first="Xiaoping" last="Li">Xiaoping Li</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation>
<nlm:affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Horticulture research</title>
<idno type="ISSN">2052-7276</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Salix triandra</i>
belongs to section
<i>Amygdalinae</i>
in genus
<i>Salix</i>
, which is in a different section from the willow species in which sex determination has been well studied. Studying sex determination in distantly related willow species will help to clarify whether the sexes of different willows arise through a common sex determination system. For this purpose, we generated an intraspecific full-sib F
<sub>1</sub>
population for
<i>S. triandra</i>
and constructed high-density genetic linkage maps for the crossing parents using restriction site-associated DNA sequencing and following a two-way pseudo-testcross strategy. With the established maps, the sex locus was positioned in linkage group XV only in the maternal map, and no sex linkage was detected in the paternal map. Consistent with previous findings in other willow species, our study showed that chromosome XV was the incipient sex chromosome and that females were the heterogametic sex in
<i>S. triandra</i>
. Therefore, sex in this willow species is also determined through a ZW sex determination system. We further performed fine mapping in the vicinity of the sex locus with SSR markers. By comparing the physical and genetic distances for the target interval encompassing the sex determination gene confined by SSRs, severe recombination repression was revealed in the sex determination region in the female map. The recombination rate in the confined interval encompassing the sex locus was approximately eight-fold lower than the genome-wide average. This study provides critical information relevant to sex determination in
<i>S. triandra</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32377355</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2052-7276</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Horticulture research</Title>
<ISOAbbreviation>Hortic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Fine mapping of the sex locus in
<i>Salix triandra</i>
confirms a consistent sex determination mechanism in genus
<i>Salix</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41438-020-0289-1</ELocationID>
<Abstract>
<AbstractText>
<i>Salix triandra</i>
belongs to section
<i>Amygdalinae</i>
in genus
<i>Salix</i>
, which is in a different section from the willow species in which sex determination has been well studied. Studying sex determination in distantly related willow species will help to clarify whether the sexes of different willows arise through a common sex determination system. For this purpose, we generated an intraspecific full-sib F
<sub>1</sub>
population for
<i>S. triandra</i>
and constructed high-density genetic linkage maps for the crossing parents using restriction site-associated DNA sequencing and following a two-way pseudo-testcross strategy. With the established maps, the sex locus was positioned in linkage group XV only in the maternal map, and no sex linkage was detected in the paternal map. Consistent with previous findings in other willow species, our study showed that chromosome XV was the incipient sex chromosome and that females were the heterogametic sex in
<i>S. triandra</i>
. Therefore, sex in this willow species is also determined through a ZW sex determination system. We further performed fine mapping in the vicinity of the sex locus with SSR markers. By comparing the physical and genetic distances for the target interval encompassing the sex determination gene confined by SSRs, severe recombination repression was revealed in the sex determination region in the female map. The recombination rate in the confined interval encompassing the sex locus was approximately eight-fold lower than the genome-wide average. This study provides critical information relevant to sex determination in
<i>S. triandra</i>
.</AbstractText>
<CopyrightInformation>© The Author(s) 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Wu</LastName>
<ForeName>Huaitong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiaoping</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yingnan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Hortic Res</MedlineTA>
<NlmUniqueID>101655540</NlmUniqueID>
<ISSNLinking>2052-7276</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Evolutionary biology</Keyword>
<Keyword MajorTopicYN="N">Plant breeding</Keyword>
</KeywordList>
<CoiStatement>Conflict of interestThe authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32377355</ArticleId>
<ArticleId IdType="doi">10.1038/s41438-020-0289-1</ArticleId>
<ArticleId IdType="pii">289</ArticleId>
<ArticleId IdType="pmc">PMC7193568</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:485-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13710-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Oct 31;346(6209):646-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2020 Feb 14;21(1):38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32059685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Apr;30(4):780-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jul;24(13):3243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Sep;27(9):368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2019 Apr 30;19(1):172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31039740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Sep;27(9):358-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2014 Oct;101(10):1588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:397-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26653795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 27;7:45388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28345647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23119006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 01;11(2):e0147671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2017 Jan;108(1):69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27974487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 15;8:1041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Mar;281(3):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19085011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Oct;165(2):935-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jun;114(6):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2008;120(3-4):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18504355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2013;140(2-4):241-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23838528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Mar 23;18(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Oct 26;8(1):1140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29074958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2018 Dec;293(6):1437-1452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2015 Jan;17(1):256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24943351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(2):495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19112169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2014 Mar;16(2):411-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23710995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Feb;53(2):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Aug 1;34(8):1991-2001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28453634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Jul;236:126-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26025526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18593814</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32377355
   |texte=   Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32377355" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020