Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.

Identifieur interne : 000126 ( Main/Corpus ); précédent : 000125; suivant : 000127

Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.

Auteurs : Ryan F. Lepak ; Sarah E. Janssen ; Daniel R. Engstrom ; David P. Krabbenhoft ; Michael T. Tate ; Runsheng Yin ; William F. Fitzgerald ; Sonia A. Nagorski ; James P. Hurley

Source :

RBID : pubmed:32597170

Abstract

The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ202Hg and Δ199Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ199Hg values measured in modern-day precipitation and modeled increases in δ202Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.

DOI: 10.1021/acs.est.0c00579
PubMed: 32597170

Links to Exploration step

pubmed:32597170

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.</title>
<author>
<name sortKey="Lepak, Ryan F" sort="Lepak, Ryan F" uniqKey="Lepak R" first="Ryan F" last="Lepak">Ryan F. Lepak</name>
<affiliation>
<nlm:affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Janssen, Sarah E" sort="Janssen, Sarah E" uniqKey="Janssen S" first="Sarah E" last="Janssen">Sarah E. Janssen</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engstrom, Daniel R" sort="Engstrom, Daniel R" uniqKey="Engstrom D" first="Daniel R" last="Engstrom">Daniel R. Engstrom</name>
<affiliation>
<nlm:affiliation>St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd St. N., Marine on St. Croix, Minnesota 55047, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krabbenhoft, David P" sort="Krabbenhoft, David P" uniqKey="Krabbenhoft D" first="David P" last="Krabbenhoft">David P. Krabbenhoft</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Michael T" sort="Tate, Michael T" uniqKey="Tate M" first="Michael T" last="Tate">Michael T. Tate</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Runsheng" sort="Yin, Runsheng" uniqKey="Yin R" first="Runsheng" last="Yin">Runsheng Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou 550081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, William F" sort="Fitzgerald, William F" uniqKey="Fitzgerald W" first="William F" last="Fitzgerald">William F. Fitzgerald</name>
<affiliation>
<nlm:affiliation>Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagorski, Sonia A" sort="Nagorski, Sonia A" uniqKey="Nagorski S" first="Sonia A" last="Nagorski">Sonia A. Nagorski</name>
<affiliation>
<nlm:affiliation>Department of Natural Sciences, University of Alaska Southeast, Juneau, Alaska 99801, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hurley, James P" sort="Hurley, James P" uniqKey="Hurley J" first="James P" last="Hurley">James P. Hurley</name>
<affiliation>
<nlm:affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr., Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32597170</idno>
<idno type="pmid">32597170</idno>
<idno type="doi">10.1021/acs.est.0c00579</idno>
<idno type="wicri:Area/Main/Corpus">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.</title>
<author>
<name sortKey="Lepak, Ryan F" sort="Lepak, Ryan F" uniqKey="Lepak R" first="Ryan F" last="Lepak">Ryan F. Lepak</name>
<affiliation>
<nlm:affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Janssen, Sarah E" sort="Janssen, Sarah E" uniqKey="Janssen S" first="Sarah E" last="Janssen">Sarah E. Janssen</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engstrom, Daniel R" sort="Engstrom, Daniel R" uniqKey="Engstrom D" first="Daniel R" last="Engstrom">Daniel R. Engstrom</name>
<affiliation>
<nlm:affiliation>St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd St. N., Marine on St. Croix, Minnesota 55047, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krabbenhoft, David P" sort="Krabbenhoft, David P" uniqKey="Krabbenhoft D" first="David P" last="Krabbenhoft">David P. Krabbenhoft</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Michael T" sort="Tate, Michael T" uniqKey="Tate M" first="Michael T" last="Tate">Michael T. Tate</name>
<affiliation>
<nlm:affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Runsheng" sort="Yin, Runsheng" uniqKey="Yin R" first="Runsheng" last="Yin">Runsheng Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou 550081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, William F" sort="Fitzgerald, William F" uniqKey="Fitzgerald W" first="William F" last="Fitzgerald">William F. Fitzgerald</name>
<affiliation>
<nlm:affiliation>Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagorski, Sonia A" sort="Nagorski, Sonia A" uniqKey="Nagorski S" first="Sonia A" last="Nagorski">Sonia A. Nagorski</name>
<affiliation>
<nlm:affiliation>Department of Natural Sciences, University of Alaska Southeast, Juneau, Alaska 99801, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hurley, James P" sort="Hurley, James P" uniqKey="Hurley J" first="James P" last="Hurley">James P. Hurley</name>
<affiliation>
<nlm:affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr., Madison, Wisconsin 53706, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ
<sup>202</sup>
Hg and Δ
<sup>199</sup>
Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ
<sup>199</sup>
Hg values measured in modern-day precipitation and modeled increases in δ
<sup>202</sup>
Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32597170</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>54</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.</ArticleTitle>
<Pagination>
<MedlinePgn>9325-9333</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.est.0c00579</ELocationID>
<Abstract>
<AbstractText>The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ
<sup>202</sup>
Hg and Δ
<sup>199</sup>
Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ
<sup>199</sup>
Hg values measured in modern-day precipitation and modeled increases in δ
<sup>202</sup>
Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lepak</LastName>
<ForeName>Ryan F</ForeName>
<Initials>RF</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2806-1895</Identifier>
<AffiliationInfo>
<Affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Janssen</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4432-3154</Identifier>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engstrom</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8066-029X</Identifier>
<AffiliationInfo>
<Affiliation>St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd St. N., Marine on St. Croix, Minnesota 55047, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krabbenhoft</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1964-5020</Identifier>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Michael T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Runsheng</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9631-5303</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou 550081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fitzgerald</LastName>
<ForeName>William F</ForeName>
<Initials>WF</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3592-1662</Identifier>
<AffiliationInfo>
<Affiliation>Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagorski</LastName>
<ForeName>Sonia A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Sciences, University of Alaska Southeast, Juneau, Alaska 99801, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hurley</LastName>
<ForeName>James P</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4430-5319</Identifier>
<AffiliationInfo>
<Affiliation>Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr., Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32597170</ArticleId>
<ArticleId IdType="doi">10.1021/acs.est.0c00579</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000126 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000126 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32597170
   |texte=   Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32597170" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020