Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.

Identifieur interne : 000065 ( Main/Corpus ); précédent : 000064; suivant : 000066

Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.

Auteurs : Kai Xue ; Joy D. Van Nostrand ; Jizhong Zhou ; Silke Neu ; Ingo Müller ; Laura Giagnoni ; Giancarlo Renella

Source :

RBID : pubmed:32849472

Abstract

Short rotation coppice (SRC) with metal tolerant plants may attenuate the pollution of excessive elements with potential toxicity in soils, while preserving soil resources and functionality. Here, we investigated effects of 6 years phytomanagement with willow SRC on properties including heavy metal levels, toxicity tested by BioTox, microbial biomass, enzyme activities, and functional gene abundances measured by GeoChip of soils contaminated by As, Cd, Pb and Zn, as compared to the same soils under non-managed mixed grassland representing no intervention treatment (Unt). Though metal total concentrations did not differ by SRC and Unt, SRC soils had lower metal availability and toxicity, higher organic carbon, microbial biomass, phosphatase, urease and protease activities, as compared to Unt soils. Significantly reduced abundances of genes encoding resistances to various metals and antibiotics were observed in SRC, likely attributed to reduced metal selective pressure based on less heavy metal availability and soil toxicity. SRC also significantly reduced abundances of genes involved in nitrogen, phosphorus, and sulfur cycles, possibly due to the willow induced selection. Overall, while the SRC phytomanagement did not reduce the total heavy metal concentrations in soils, it decreased the heavy metal availability and soil toxicity, which in turn led to less metal selective pressure on microbial communities. The SRC phytomanagement also reduced the abundances of nutrient cycling genes from microbial communities, possibly due to intense plant nutrient uptake that depleted soil nitrogen and phosphorus availability, and thus site-specific practices should be considered to improve the soil nutrient supply for phytomanagement plants.

DOI: 10.3389/fmicb.2020.01899
PubMed: 32849472
PubMed Central: PMC7426507

Links to Exploration step

pubmed:32849472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.</title>
<author>
<name sortKey="Xue, Kai" sort="Xue, Kai" uniqKey="Xue K" first="Kai" last="Xue">Kai Xue</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences (CAS), Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Nostrand, Joy D" sort="Van Nostrand, Joy D" uniqKey="Van Nostrand J" first="Joy D" last="Van Nostrand">Joy D. Van Nostrand</name>
<affiliation>
<nlm:affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jizhong" sort="Zhou, Jizhong" uniqKey="Zhou J" first="Jizhong" last="Zhou">Jizhong Zhou</name>
<affiliation>
<nlm:affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neu, Silke" sort="Neu, Silke" uniqKey="Neu S" first="Silke" last="Neu">Silke Neu</name>
<affiliation>
<nlm:affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ingo" sort="Muller, Ingo" uniqKey="Muller I" first="Ingo" last="Müller">Ingo Müller</name>
<affiliation>
<nlm:affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giagnoni, Laura" sort="Giagnoni, Laura" uniqKey="Giagnoni L" first="Laura" last="Giagnoni">Laura Giagnoni</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Renella, Giancarlo" sort="Renella, Giancarlo" uniqKey="Renella G" first="Giancarlo" last="Renella">Giancarlo Renella</name>
<affiliation>
<nlm:affiliation>Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849472</idno>
<idno type="pmid">32849472</idno>
<idno type="doi">10.3389/fmicb.2020.01899</idno>
<idno type="pmc">PMC7426507</idno>
<idno type="wicri:Area/Main/Corpus">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.</title>
<author>
<name sortKey="Xue, Kai" sort="Xue, Kai" uniqKey="Xue K" first="Kai" last="Xue">Kai Xue</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences (CAS), Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Nostrand, Joy D" sort="Van Nostrand, Joy D" uniqKey="Van Nostrand J" first="Joy D" last="Van Nostrand">Joy D. Van Nostrand</name>
<affiliation>
<nlm:affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jizhong" sort="Zhou, Jizhong" uniqKey="Zhou J" first="Jizhong" last="Zhou">Jizhong Zhou</name>
<affiliation>
<nlm:affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neu, Silke" sort="Neu, Silke" uniqKey="Neu S" first="Silke" last="Neu">Silke Neu</name>
<affiliation>
<nlm:affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ingo" sort="Muller, Ingo" uniqKey="Muller I" first="Ingo" last="Müller">Ingo Müller</name>
<affiliation>
<nlm:affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giagnoni, Laura" sort="Giagnoni, Laura" uniqKey="Giagnoni L" first="Laura" last="Giagnoni">Laura Giagnoni</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Renella, Giancarlo" sort="Renella, Giancarlo" uniqKey="Renella G" first="Giancarlo" last="Renella">Giancarlo Renella</name>
<affiliation>
<nlm:affiliation>Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Short rotation coppice (SRC) with metal tolerant plants may attenuate the pollution of excessive elements with potential toxicity in soils, while preserving soil resources and functionality. Here, we investigated effects of 6 years phytomanagement with willow SRC on properties including heavy metal levels, toxicity tested by BioTox, microbial biomass, enzyme activities, and functional gene abundances measured by GeoChip of soils contaminated by As, Cd, Pb and Zn, as compared to the same soils under non-managed mixed grassland representing no intervention treatment (Unt). Though metal total concentrations did not differ by SRC and Unt, SRC soils had lower metal availability and toxicity, higher organic carbon, microbial biomass, phosphatase, urease and protease activities, as compared to Unt soils. Significantly reduced abundances of genes encoding resistances to various metals and antibiotics were observed in SRC, likely attributed to reduced metal selective pressure based on less heavy metal availability and soil toxicity. SRC also significantly reduced abundances of genes involved in nitrogen, phosphorus, and sulfur cycles, possibly due to the willow induced selection. Overall, while the SRC phytomanagement did not reduce the total heavy metal concentrations in soils, it decreased the heavy metal availability and soil toxicity, which in turn led to less metal selective pressure on microbial communities. The SRC phytomanagement also reduced the abundances of nutrient cycling genes from microbial communities, possibly due to intense plant nutrient uptake that depleted soil nitrogen and phosphorus availability, and thus site-specific practices should be considered to improve the soil nutrient supply for phytomanagement plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32849472</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.</ArticleTitle>
<Pagination>
<MedlinePgn>1899</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01899</ELocationID>
<Abstract>
<AbstractText>Short rotation coppice (SRC) with metal tolerant plants may attenuate the pollution of excessive elements with potential toxicity in soils, while preserving soil resources and functionality. Here, we investigated effects of 6 years phytomanagement with willow SRC on properties including heavy metal levels, toxicity tested by BioTox, microbial biomass, enzyme activities, and functional gene abundances measured by GeoChip of soils contaminated by As, Cd, Pb and Zn, as compared to the same soils under non-managed mixed grassland representing no intervention treatment (Unt). Though metal total concentrations did not differ by SRC and Unt, SRC soils had lower metal availability and toxicity, higher organic carbon, microbial biomass, phosphatase, urease and protease activities, as compared to Unt soils. Significantly reduced abundances of genes encoding resistances to various metals and antibiotics were observed in SRC, likely attributed to reduced metal selective pressure based on less heavy metal availability and soil toxicity. SRC also significantly reduced abundances of genes involved in nitrogen, phosphorus, and sulfur cycles, possibly due to the willow induced selection. Overall, while the SRC phytomanagement did not reduce the total heavy metal concentrations in soils, it decreased the heavy metal availability and soil toxicity, which in turn led to less metal selective pressure on microbial communities. The SRC phytomanagement also reduced the abundances of nutrient cycling genes from microbial communities, possibly due to intense plant nutrient uptake that depleted soil nitrogen and phosphorus availability, and thus site-specific practices should be considered to improve the soil nutrient supply for phytomanagement plants.</AbstractText>
<CopyrightInformation>Copyright © 2020 Xue, Van Nostrand, Zhou, Neu, Müller, Giagnoni and Renella.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences (CAS), Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Nostrand</LastName>
<ForeName>Joy D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jizhong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute for Environmental Genomics & Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Neu</LastName>
<ForeName>Silke</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Saxon State Office for Environment, Agriculture and Geology, Freiberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giagnoni</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Renella</LastName>
<ForeName>Giancarlo</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">microbial functional genes</Keyword>
<Keyword MajorTopicYN="N">phytomanagement</Keyword>
<Keyword MajorTopicYN="N">soil ecological functions</Keyword>
<Keyword MajorTopicYN="N">soil microbial communities</Keyword>
<Keyword MajorTopicYN="N">soil pollution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849472</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01899</ArticleId>
<ArticleId IdType="pmc">PMC7426507</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioresour Technol. 2006 Jan;97(1):150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Public Health. 2013;2013:158764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23843802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jun 14;17(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27314330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7843-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Oct 15;496:510-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25108253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Nov;138:469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26183942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2015;17(11):1005-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 15;6:37084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27845404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1999 Jun;51(6):730-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10422221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2014 Sep;14(5):914-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24520909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Jan 1;47(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 May 15;717:137055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32065888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Jun;5(3):240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12057676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2015 May;64(Pt 5):471-497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Apr 15;42(8):2819-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32849472
   |texte=   Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32849472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020