Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.

Identifieur interne : 000037 ( Main/Corpus ); précédent : 000036; suivant : 000038

Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.

Auteurs : Anders R. Johnsen ; Tonny B. Thomsen ; Simon M. Thaarup

Source :

RBID : pubmed:33041467

Abstract

The aim of our study was to test whether surficial geochemical techniques are applicable under arctic conditions where pedogenesis is slow or absent, and where the vegetation is arctic dwarf shrub tundra. To this end, we sampled vegetation and topsoil at a known Zn-Pb-Ag anomaly at Kangerluarsuk, northwest Greenland. This Zn-Pb-Ag mineralization surfaces in part of the test area and is deeply buried in other parts. The surface mineralization could readily be identified by element analysis of the omnipresent plant Salix glauca. The strongest signal came from the pathfinder element Tl. The target elements Pb and Ag gave only weak signals and Zn gave no signal, probably because the cellular concentration of these elements is actively regulated by the plant. The use of regulated plant micronutrients as reference elements gave a small reduction of analytical noise in Tl/Cu and Tl/B concentration ratios at low Tl concentrations which improved identification of the deep mineralization. Pathfinder elements in plants may thus prove useful when combined with a detailed geophysical model. Tl, Zn, Pb and Ag concentrations in topsoil identified the surface mineralization but failed to identify the deep mineralization. This difference between samples of S. glauca and topsoil is probably because target elements from the deep mineralization must be mobile to reach the surface. Mobile elements may be more accessible for ion-exchange and uptake into the plants compared to the recalcitrant and crystalline fraction in the topsoil.

DOI: 10.1016/j.gexplo.2020.106665
PubMed: 33041467
PubMed Central: PMC7536512

Links to Exploration step

pubmed:33041467

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.</title>
<author>
<name sortKey="Johnsen, Anders R" sort="Johnsen, Anders R" uniqKey="Johnsen A" first="Anders R" last="Johnsen">Anders R. Johnsen</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomsen, Tonny B" sort="Thomsen, Tonny B" uniqKey="Thomsen T" first="Tonny B" last="Thomsen">Tonny B. Thomsen</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thaarup, Simon M" sort="Thaarup, Simon M" uniqKey="Thaarup S" first="Simon M" last="Thaarup">Simon M. Thaarup</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, c/o Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33041467</idno>
<idno type="pmid">33041467</idno>
<idno type="doi">10.1016/j.gexplo.2020.106665</idno>
<idno type="pmc">PMC7536512</idno>
<idno type="wicri:Area/Main/Corpus">000037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.</title>
<author>
<name sortKey="Johnsen, Anders R" sort="Johnsen, Anders R" uniqKey="Johnsen A" first="Anders R" last="Johnsen">Anders R. Johnsen</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomsen, Tonny B" sort="Thomsen, Tonny B" uniqKey="Thomsen T" first="Tonny B" last="Thomsen">Tonny B. Thomsen</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thaarup, Simon M" sort="Thaarup, Simon M" uniqKey="Thaarup S" first="Simon M" last="Thaarup">Simon M. Thaarup</name>
<affiliation>
<nlm:affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, c/o Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of geochemical exploration</title>
<idno type="ISSN">0375-6742</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of our study was to test whether surficial geochemical techniques are applicable under arctic conditions where pedogenesis is slow or absent, and where the vegetation is arctic dwarf shrub tundra. To this end, we sampled vegetation and topsoil at a known Zn-Pb-Ag anomaly at Kangerluarsuk, northwest Greenland. This Zn-Pb-Ag mineralization surfaces in part of the test area and is deeply buried in other parts. The surface mineralization could readily be identified by element analysis of the omnipresent plant
<i>Salix glauca</i>
. The strongest signal came from the pathfinder element Tl. The target elements Pb and Ag gave only weak signals and Zn gave no signal, probably because the cellular concentration of these elements is actively regulated by the plant. The use of regulated plant micronutrients as reference elements gave a small reduction of analytical noise in Tl/Cu and Tl/B concentration ratios at low Tl concentrations which improved identification of the deep mineralization. Pathfinder elements in plants may thus prove useful when combined with a detailed geophysical model. Tl, Zn, Pb and Ag concentrations in topsoil identified the surface mineralization but failed to identify the deep mineralization. This difference between samples of
<i>S. glauca</i>
and topsoil is probably because target elements from the deep mineralization must be mobile to reach the surface. Mobile elements may be more accessible for ion-exchange and uptake into the plants compared to the recalcitrant and crystalline fraction in the topsoil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33041467</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0375-6742</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>220</Volume>
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of geochemical exploration</Title>
<ISOAbbreviation>J Geochem Explor</ISOAbbreviation>
</Journal>
<ArticleTitle>Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.</ArticleTitle>
<Pagination>
<MedlinePgn>106665</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.gexplo.2020.106665</ELocationID>
<Abstract>
<AbstractText>The aim of our study was to test whether surficial geochemical techniques are applicable under arctic conditions where pedogenesis is slow or absent, and where the vegetation is arctic dwarf shrub tundra. To this end, we sampled vegetation and topsoil at a known Zn-Pb-Ag anomaly at Kangerluarsuk, northwest Greenland. This Zn-Pb-Ag mineralization surfaces in part of the test area and is deeply buried in other parts. The surface mineralization could readily be identified by element analysis of the omnipresent plant
<i>Salix glauca</i>
. The strongest signal came from the pathfinder element Tl. The target elements Pb and Ag gave only weak signals and Zn gave no signal, probably because the cellular concentration of these elements is actively regulated by the plant. The use of regulated plant micronutrients as reference elements gave a small reduction of analytical noise in Tl/Cu and Tl/B concentration ratios at low Tl concentrations which improved identification of the deep mineralization. Pathfinder elements in plants may thus prove useful when combined with a detailed geophysical model. Tl, Zn, Pb and Ag concentrations in topsoil identified the surface mineralization but failed to identify the deep mineralization. This difference between samples of
<i>S. glauca</i>
and topsoil is probably because target elements from the deep mineralization must be mobile to reach the surface. Mobile elements may be more accessible for ion-exchange and uptake into the plants compared to the recalcitrant and crystalline fraction in the topsoil.</AbstractText>
<CopyrightInformation>© 2020 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johnsen</LastName>
<ForeName>Anders R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomsen</LastName>
<ForeName>Tonny B</ForeName>
<Initials>TB</Initials>
<AffiliationInfo>
<Affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thaarup</LastName>
<ForeName>Simon M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Geological Survey of Denmark and Greenland (GEUS), Department of Petrology and Economic Geology, c/o Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Geochem Explor</MedlineTA>
<NlmUniqueID>101594038</NlmUniqueID>
<ISSNLinking>0375-6742</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Buried mineralization</Keyword>
<Keyword MajorTopicYN="N">Element ratios</Keyword>
<Keyword MajorTopicYN="N">Exploration tool</Keyword>
<Keyword MajorTopicYN="N">Greenland</Keyword>
<Keyword MajorTopicYN="N">Salix glauca</Keyword>
<Keyword MajorTopicYN="N">Thallium</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>26</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33041467</ArticleId>
<ArticleId IdType="doi">10.1016/j.gexplo.2020.106665</ArticleId>
<ArticleId IdType="pii">S0375-6742(20)30625-7</ArticleId>
<ArticleId IdType="pmc">PMC7536512</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33041467
   |texte=   Test of vegetation-based surface exploration for detection of Arctic mineralizations: The deep buried Kangerluarsuk Zn-Pb-Ag anomaly.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33041467" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020