Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.

Identifieur interne : 000259 ( Main/Exploration ); précédent : 000258; suivant : 000260

Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.

Auteurs : Soile Jokipii [Finlande] ; Hely H Ggman ; Günter Brader ; Pauli T. Kallio ; Karoliina Niemi

Source :

RBID : pubmed:18544611

Descripteurs français

English descriptors

Abstract

Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremulaxtremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.

DOI: 10.1093/jxb/ern107
PubMed: 18544611
PubMed Central: PMC2423654


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.</title>
<author>
<name sortKey="Jokipii, Soile" sort="Jokipii, Soile" uniqKey="Jokipii S" first="Soile" last="Jokipii">Soile Jokipii</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, PO Box 3000, 90014 University of Oulu, Finland. Soile.Jokipii@oulu.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biology, PO Box 3000, 90014 University of Oulu</wicri:regionArea>
<wicri:noRegion>90014 University of Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="H Ggman, Hely" sort="H Ggman, Hely" uniqKey="H Ggman H" first="Hely" last="H Ggman">Hely H Ggman</name>
</author>
<author>
<name sortKey="Brader, Gunter" sort="Brader, Gunter" uniqKey="Brader G" first="Günter" last="Brader">Günter Brader</name>
</author>
<author>
<name sortKey="Kallio, Pauli T" sort="Kallio, Pauli T" uniqKey="Kallio P" first="Pauli T" last="Kallio">Pauli T. Kallio</name>
</author>
<author>
<name sortKey="Niemi, Karoliina" sort="Niemi, Karoliina" uniqKey="Niemi K" first="Karoliina" last="Niemi">Karoliina Niemi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18544611</idno>
<idno type="pmid">18544611</idno>
<idno type="doi">10.1093/jxb/ern107</idno>
<idno type="pmc">PMC2423654</idno>
<idno type="wicri:Area/Main/Corpus">000256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000256</idno>
<idno type="wicri:Area/Main/Curation">000256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000256</idno>
<idno type="wicri:Area/Main/Exploration">000256</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.</title>
<author>
<name sortKey="Jokipii, Soile" sort="Jokipii, Soile" uniqKey="Jokipii S" first="Soile" last="Jokipii">Soile Jokipii</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, PO Box 3000, 90014 University of Oulu, Finland. Soile.Jokipii@oulu.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biology, PO Box 3000, 90014 University of Oulu</wicri:regionArea>
<wicri:noRegion>90014 University of Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="H Ggman, Hely" sort="H Ggman, Hely" uniqKey="H Ggman H" first="Hely" last="H Ggman">Hely H Ggman</name>
</author>
<author>
<name sortKey="Brader, Gunter" sort="Brader, Gunter" uniqKey="Brader G" first="Günter" last="Brader">Günter Brader</name>
</author>
<author>
<name sortKey="Kallio, Pauli T" sort="Kallio, Pauli T" uniqKey="Kallio P" first="Pauli T" last="Kallio">Pauli T. Kallio</name>
</author>
<author>
<name sortKey="Niemi, Karoliina" sort="Niemi, Karoliina" uniqKey="Niemi K" first="Karoliina" last="Niemi">Karoliina Niemi</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Basidiomycota (physiology)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hemoglobins (chemistry)</term>
<term>Hemoglobins (genetics)</term>
<term>Hemoglobins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (microbiology)</term>
<term>Populus (physiology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Truncated Hemoglobins (genetics)</term>
<term>Truncated Hemoglobins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Hémoglobines (composition chimique)</term>
<term>Hémoglobines (génétique)</term>
<term>Hémoglobines (métabolisme)</term>
<term>Hémoglobines tronquées (génétique)</term>
<term>Hémoglobines tronquées (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (physiologie)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Végétaux génétiquement modifiés (croissance et développement)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hemoglobins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hemoglobins</term>
<term>Plant Proteins</term>
<term>Truncated Hemoglobins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hemoglobins</term>
<term>Plant Proteins</term>
<term>Truncated Hemoglobins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Hémoglobines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hémoglobines</term>
<term>Hémoglobines tronquées</term>
<term>Populus</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hémoglobines</term>
<term>Hémoglobines tronquées</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Mycorhizes</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremulaxtremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18544611</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>59</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2008</Year>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.</ArticleTitle>
<Pagination>
<MedlinePgn>2449-59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ern107</ELocationID>
<Abstract>
<AbstractText>Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremulaxtremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jokipii</LastName>
<ForeName>Soile</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, PO Box 3000, 90014 University of Oulu, Finland. Soile.Jokipii@oulu.fi</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Häggman</LastName>
<ForeName>Hely</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brader</LastName>
<ForeName>Günter</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kallio</LastName>
<ForeName>Pauli T</ForeName>
<Initials>PT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niemi</LastName>
<ForeName>Karoliina</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EF180083</AccessionNumber>
<AccessionNumber>EF180084</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054793">Truncated Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>104781-86-4</RegistryNumber>
<NameOfSubstance UI="C082613">hemoglobin protein, Vitreoscilla</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006454" MajorTopicYN="N">Hemoglobins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054793" MajorTopicYN="N">Truncated Hemoglobins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18544611</ArticleId>
<ArticleId IdType="pii">ern107</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ern107</ArticleId>
<ArticleId IdType="pmc">PMC2423654</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jan 15;219(1-2):201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(3):479-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Mar;220(5):757-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15517353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Apr;19(4):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16610747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Oct;12(5):263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12375138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Sep;96(4):557-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(3):489-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2002 Mar-Apr;18(2):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Nov;47(5):677-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11725952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2004 Jan;17(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15000647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jan;46(1):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2005 Jan;71(1):48-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15678373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2005 Jan;99(1):247-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Jan;20(2):123-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Oct;27(4):525-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14550944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Mar;46(3):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2004 Jul;27(3):209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Aug 13;572(1-3):27-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):954-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12230-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1996 Jan 20;49(2):151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18623565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1491-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Feb;46(2):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Jul;161(2):279-287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5902-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Mar;15(3):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9062923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Apr;218(6):900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14716561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2001 Oct;19(2):201-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11725489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2004 May;2(3):221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17147613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006;6:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Feb;23(2):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Oct;68(10):4835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91 Spec No:173-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brader, Gunter" sort="Brader, Gunter" uniqKey="Brader G" first="Günter" last="Brader">Günter Brader</name>
<name sortKey="H Ggman, Hely" sort="H Ggman, Hely" uniqKey="H Ggman H" first="Hely" last="H Ggman">Hely H Ggman</name>
<name sortKey="Kallio, Pauli T" sort="Kallio, Pauli T" uniqKey="Kallio P" first="Pauli T" last="Kallio">Pauli T. Kallio</name>
<name sortKey="Niemi, Karoliina" sort="Niemi, Karoliina" uniqKey="Niemi K" first="Karoliina" last="Niemi">Karoliina Niemi</name>
</noCountry>
<country name="Finlande">
<noRegion>
<name sortKey="Jokipii, Soile" sort="Jokipii, Soile" uniqKey="Jokipii S" first="Soile" last="Jokipii">Soile Jokipii</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000259 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000259 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18544611
   |texte=   Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18544611" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020