Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.

Identifieur interne : 000230 ( Main/Exploration ); précédent : 000229; suivant : 000231

Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.

Auteurs : Olga K. Kamneva [États-Unis] ; Stormy J. Knight ; David A. Liberles ; Naomi L. Ward

Source :

RBID : pubmed:23221607

Descripteurs français

English descriptors

Abstract

The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.

DOI: 10.1093/gbe/evs113
PubMed: 23221607
PubMed Central: PMC3542564


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.</title>
<author>
<name sortKey="Kamneva, Olga K" sort="Kamneva, Olga K" uniqKey="Kamneva O" first="Olga K" last="Kamneva">Olga K. Kamneva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, University of Wyoming, WY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, University of Wyoming, WY</wicri:regionArea>
<placeName>
<region type="state">Wyoming</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Knight, Stormy J" sort="Knight, Stormy J" uniqKey="Knight S" first="Stormy J" last="Knight">Stormy J. Knight</name>
</author>
<author>
<name sortKey="Liberles, David A" sort="Liberles, David A" uniqKey="Liberles D" first="David A" last="Liberles">David A. Liberles</name>
</author>
<author>
<name sortKey="Ward, Naomi L" sort="Ward, Naomi L" uniqKey="Ward N" first="Naomi L" last="Ward">Naomi L. Ward</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23221607</idno>
<idno type="pmid">23221607</idno>
<idno type="doi">10.1093/gbe/evs113</idno>
<idno type="pmc">PMC3542564</idno>
<idno type="wicri:Area/Main/Corpus">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000222</idno>
<idno type="wicri:Area/Main/Curation">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000222</idno>
<idno type="wicri:Area/Main/Exploration">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.</title>
<author>
<name sortKey="Kamneva, Olga K" sort="Kamneva, Olga K" uniqKey="Kamneva O" first="Olga K" last="Kamneva">Olga K. Kamneva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, University of Wyoming, WY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, University of Wyoming, WY</wicri:regionArea>
<placeName>
<region type="state">Wyoming</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Knight, Stormy J" sort="Knight, Stormy J" uniqKey="Knight S" first="Stormy J" last="Knight">Stormy J. Knight</name>
</author>
<author>
<name sortKey="Liberles, David A" sort="Liberles, David A" uniqKey="Liberles D" first="David A" last="Liberles">David A. Liberles</name>
</author>
<author>
<name sortKey="Ward, Naomi L" sort="Ward, Naomi L" uniqKey="Ward N" first="Naomi L" last="Ward">Naomi L. Ward</name>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>DNA Repeat Expansion (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Genome Size (MeSH)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Gram-Negative Bacteria (genetics)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries à Gram négatif (génétique)</term>
<term>Duplication de gène (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Expansion de séquence répétée de l'ADN (MeSH)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Génome bactérien (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Taille du génome (MeSH)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Écosystème (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gram-Negative Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries à Gram négatif</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Repeat Expansion</term>
<term>Ecosystem</term>
<term>Evolution, Molecular</term>
<term>Gene Deletion</term>
<term>Gene Duplication</term>
<term>Gene Transfer, Horizontal</term>
<term>Genes, Bacterial</term>
<term>Genome Size</term>
<term>Genome, Bacterial</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Duplication de gène</term>
<term>Délétion de gène</term>
<term>Expansion de séquence répétée de l'ADN</term>
<term>Gènes bactériens</term>
<term>Génome bactérien</term>
<term>Phylogenèse</term>
<term>Taille du génome</term>
<term>Transfert horizontal de gène</term>
<term>Écosystème</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23221607</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.</ArticleTitle>
<Pagination>
<MedlinePgn>1375-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evs113</ELocationID>
<Abstract>
<AbstractText>The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kamneva</LastName>
<ForeName>Olga K</ForeName>
<Initials>OK</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, University of Wyoming, WY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Knight</LastName>
<ForeName>Stormy J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liberles</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ward</LastName>
<ForeName>Naomi L</ForeName>
<Initials>NL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 RR016474</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042622" MajorTopicYN="N">DNA Repeat Expansion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="N">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059646" MajorTopicYN="N">Genome Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="Y">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006090" MajorTopicYN="N">Gram-Negative Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23221607</ArticleId>
<ArticleId IdType="pii">evs113</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evs113</ArticleId>
<ArticleId IdType="pmc">PMC3542564</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1993 Nov;10(6):1396-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8277861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 8;480(7376):241-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 May 18;405(6784):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Jul 15;236(2):333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15251216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jun;70(6):3724-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1992 Jul;35(1):17-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2011;6:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21861918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2005;3:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:373-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2009;9:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19133117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Dec;16(12):1664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Aug 1;26(15):1910-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(8):e234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16802857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2003 Jun;41(6):2752-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 May;18(5):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1995 Sep-Oct;42(5):452-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7581321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Apr;21(4):385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10192388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Apr;28(4):1481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:299-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 May;190(9):3192-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18310338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e30287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22299034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 1984;50(3):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6486770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Aug;63(2):240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16830091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 3;311(5765):1283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Oct;20(10):1598-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Oct 18;2:211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Sep 15;166(2):231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9770279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Feb;25(2):254-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2011 Apr;193(4):307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21184215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Feb;11(2):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2010 Jun;20(3):390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Oct;17(10):589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11585665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Feb;43(2):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6174077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):93-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21170026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2008;3:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18593465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 Apr;6(4):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10201396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Dec;99(6):567-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006;6:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Aug 15;77(16):5826-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Jan;8(1):e1000281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2006 Jun;17(3):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(5):R71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1972 Sep 15;177(4053):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5055944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2003 Feb 6;3:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12625841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Aug 24;317(5841):1093-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2011 Mar;2(3):202-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2010;2:870-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21048002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22135293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Sep 1;25(17):2286-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):254-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2002 Apr;54(4):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):476-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Aug 01;2:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21904534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2008;62:113-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18473699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5714-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wyoming</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Knight, Stormy J" sort="Knight, Stormy J" uniqKey="Knight S" first="Stormy J" last="Knight">Stormy J. Knight</name>
<name sortKey="Liberles, David A" sort="Liberles, David A" uniqKey="Liberles D" first="David A" last="Liberles">David A. Liberles</name>
<name sortKey="Ward, Naomi L" sort="Ward, Naomi L" uniqKey="Ward N" first="Naomi L" last="Ward">Naomi L. Ward</name>
</noCountry>
<country name="États-Unis">
<region name="Wyoming">
<name sortKey="Kamneva, Olga K" sort="Kamneva, Olga K" uniqKey="Kamneva O" first="Olga K" last="Kamneva">Olga K. Kamneva</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23221607
   |texte=   Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23221607" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020