Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.

Identifieur interne : 000228 ( Main/Exploration ); précédent : 000227; suivant : 000229

Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.

Auteurs : Brooke L. Deatherage [États-Unis] ; Brad T. Cookson

Source :

RBID : pubmed:22409932

Descripteurs français

English descriptors

Abstract

Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.

DOI: 10.1128/IAI.06014-11
PubMed: 22409932
PubMed Central: PMC3370574


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.</title>
<author>
<name sortKey="Deatherage, Brooke L" sort="Deatherage, Brooke L" uniqKey="Deatherage B" first="Brooke L" last="Deatherage">Brooke L. Deatherage</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cookson, Brad T" sort="Cookson, Brad T" uniqKey="Cookson B" first="Brad T" last="Cookson">Brad T. Cookson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22409932</idno>
<idno type="pmid">22409932</idno>
<idno type="doi">10.1128/IAI.06014-11</idno>
<idno type="pmc">PMC3370574</idno>
<idno type="wicri:Area/Main/Corpus">000229</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000229</idno>
<idno type="wicri:Area/Main/Curation">000229</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000229</idno>
<idno type="wicri:Area/Main/Exploration">000229</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.</title>
<author>
<name sortKey="Deatherage, Brooke L" sort="Deatherage, Brooke L" uniqKey="Deatherage B" first="Brooke L" last="Deatherage">Brooke L. Deatherage</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cookson, Brad T" sort="Cookson, Brad T" uniqKey="Cookson B" first="Brad T" last="Cookson">Brad T. Cookson</name>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="eISSN">1098-5522</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Archaea (cytology)</term>
<term>Archaea (metabolism)</term>
<term>Bacteria (cytology)</term>
<term>Bacteria (metabolism)</term>
<term>Cell Membrane (physiology)</term>
<term>Eukaryota (cytology)</term>
<term>Eukaryota (metabolism)</term>
<term>Exosomes (physiology)</term>
<term>Fungi (cytology)</term>
<term>Fungi (metabolism)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Parasites (cytology)</term>
<term>Parasites (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Archéobactéries (cytologie)</term>
<term>Archéobactéries (métabolisme)</term>
<term>Bactéries (cytologie)</term>
<term>Bactéries (métabolisme)</term>
<term>Champignons (cytologie)</term>
<term>Champignons (métabolisme)</term>
<term>Eucaryotes (cytologie)</term>
<term>Eucaryotes (métabolisme)</term>
<term>Exosomes (physiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Membrane cellulaire (physiologie)</term>
<term>Parasites (cytologie)</term>
<term>Parasites (métabolisme)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Champignons</term>
<term>Eucaryotes</term>
<term>Parasites</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
<term>Eukaryota</term>
<term>Fungi</term>
<term>Parasites</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
<term>Eukaryota</term>
<term>Fungi</term>
<term>Parasites</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Champignons</term>
<term>Eucaryotes</term>
<term>Parasites</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Exosomes</term>
<term>Membrane cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Membrane</term>
<term>Exosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Interactions hôte-pathogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22409932</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5522</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>80</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect Immun</ISOAbbreviation>
</Journal>
<ArticleTitle>Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.</ArticleTitle>
<Pagination>
<MedlinePgn>1948-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/IAI.06014-11</ELocationID>
<Abstract>
<AbstractText>Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deatherage</LastName>
<ForeName>Brooke L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, Washington, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cookson</LastName>
<ForeName>Brad T</ForeName>
<Initials>BT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 AI055396</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI090882</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI55396</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055354" MajorTopicYN="N">Exosomes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010271" MajorTopicYN="N">Parasites</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22409932</ArticleId>
<ArticleId IdType="pii">IAI.06014-11</ArticleId>
<ArticleId IdType="doi">10.1128/IAI.06014-11</ArticleId>
<ArticleId IdType="pmc">PMC3370574</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proteomics. 2006 Jun;6(11):3400-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1967 Jan;93(1):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4960155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 1993 Mar;121(3):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8474529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2008 Jun;159(5):390-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20588296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Oct;8(10):731-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2003;6(3-4):127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15153765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oral Microbiol Immunol. 2000 Dec;15(6):393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Oct 3;115(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Nov 24;23(23):4538-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Nov 11;337(1):173-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16182250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Nov;192(21):5645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Electron Microsc (Tokyo). 2003;52(5):465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14700078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3123455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jun;72(6):1395-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2007 Mar;132(3):1009-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17383424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jan;7(1):58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Oct;275(4 Pt 1):G681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9756497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Nov 15;19(22):2645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Nov;80(22):6927-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6316334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Jan;6(1):48-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 15;437(7057):422-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16163359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 May 4;3(5):e62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17480118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Mar;73(3):1350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood Rev. 2007 May;21(3):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17118501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1992 Mar;89(3):816-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1541674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 14;286(2):1269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21056982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 2006 Nov 15;107(2):102-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Archaea. 2002 Mar;1(1):9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15803654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(15):5385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Sep 23;467(7314):426-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2000 Mar;28(3):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10702357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(6):e11113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20559436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 1990;30(8):597-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2097346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21687732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jan;63(2):545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1997 Jan;65(1):24-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8975888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mass Spectrom Rev. 2008 Nov-Dec;27(6):535-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Sep;180(18):4872-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 1999 Jun;188(2):220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10398168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2010;64:163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20825345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1989 May;27(5):962-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2501356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Sep;7(17):3143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2009 Jan;13(1):67-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18972064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Sep 10;73(10):1907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2010;25(2):120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21576862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Jul;68(7):4225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10858240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1974 Mar;13(3):631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4595901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2009 Apr;21(4):317-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Aug;21(4):568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19560911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(2):491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18630345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1960-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Archaea. 2010;2010:608243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Dec 1;179(11):7692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(2):R35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mcgill J Med. 2007 Jan;10(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18523595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 Sep;79(9):3760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1966 Oct;92(4):1206-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4959044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1982 Oct;146(4):568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6126510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Aug;10(8):1695-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Mar;12(3):372-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1999 Sep;180(3):915-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1989 Jun;6(6):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2671583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Jun 19;24(25):5277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Jun;2(6):e67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16846256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 Sep;9(10):1698-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18637903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1978 Apr 4;508(2):287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">346062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 1997 Nov;40(5):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9421308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(3):954-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 May;182(10):2985-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10781574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jan;6(1):e1000724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Jun;74(6):3285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16714556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2001 Aug;147(Pt 8):2355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11496012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 Jun;79(6):2182-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2000 Mar;181(3):1034-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10720528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jul 1;122(Pt 13):2163-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2010 Nov;3(6):533-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21331232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008;1(1):37-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endotoxin Res. 2001;7(6):401-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11753210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Feb;19(2):43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1996 Oct;21(4):249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8905614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1976 Dec 14;455(3):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">793634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1990 Jun;58(6):1691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2111285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1981 May 15;116(2):331-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7018907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2009;9:220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19835618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Apr;74(4):2022-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(16):5945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2002 Nov 30;360(9347):1741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12480427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2011 Aug;68(16):2667-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21560073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Dec;9(24):5425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 15;123(Pt 6):842-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 28;275(17):12489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10777535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1999 May;38(5):273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10355115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 1993 Jan;91(1):73-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7678211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1997 Jul;20(3-4):291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9299708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Cookson, Brad T" sort="Cookson, Brad T" uniqKey="Cookson B" first="Brad T" last="Cookson">Brad T. Cookson</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Deatherage, Brooke L" sort="Deatherage, Brooke L" uniqKey="Deatherage B" first="Brooke L" last="Deatherage">Brooke L. Deatherage</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22409932
   |texte=   Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22409932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020