Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

Identifieur interne : 000077 ( Main/Curation ); précédent : 000076; suivant : 000078

Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

Auteurs : Kyle A. Nordquist [États-Unis] ; Kevin M. Schaab [États-Unis] ; Jierui Sha [États-Unis] ; Andrew H. Bond [États-Unis]

Source :

RBID : pubmed:28966560

Abstract

Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies (n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments (n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

DOI: 10.1021/acs.cgd.7b00574
PubMed: 28966560
PubMed Central: PMC5613273

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28966560

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.</title>
<author>
<name sortKey="Nordquist, Kyle A" sort="Nordquist, Kyle A" uniqKey="Nordquist K" first="Kyle A" last="Nordquist">Kyle A. Nordquist</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schaab, Kevin M" sort="Schaab, Kevin M" uniqKey="Schaab K" first="Kevin M" last="Schaab">Kevin M. Schaab</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sha, Jierui" sort="Sha, Jierui" uniqKey="Sha J" first="Jierui" last="Sha">Jierui Sha</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bond, Andrew H" sort="Bond, Andrew H" uniqKey="Bond A" first="Andrew H" last="Bond">Andrew H. Bond</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28966560</idno>
<idno type="pmid">28966560</idno>
<idno type="doi">10.1021/acs.cgd.7b00574</idno>
<idno type="pmc">PMC5613273</idno>
<idno type="wicri:Area/Main/Corpus">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000077</idno>
<idno type="wicri:Area/Main/Curation">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.</title>
<author>
<name sortKey="Nordquist, Kyle A" sort="Nordquist, Kyle A" uniqKey="Nordquist K" first="Kyle A" last="Nordquist">Kyle A. Nordquist</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schaab, Kevin M" sort="Schaab, Kevin M" uniqKey="Schaab K" first="Kevin M" last="Schaab">Kevin M. Schaab</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sha, Jierui" sort="Sha, Jierui" uniqKey="Sha J" first="Jierui" last="Sha">Jierui Sha</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bond, Andrew H" sort="Bond, Andrew H" uniqKey="Bond A" first="Andrew H" last="Bond">Andrew H. Bond</name>
<affiliation wicri:level="1">
<nlm:affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Crystal growth & design</title>
<idno type="ISSN">1528-7483</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies (
<i>n</i>
≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments (
<i>n</i>
≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28966560</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1528-7483</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Crystal growth & design</Title>
<ISOAbbreviation>Cryst Growth Des</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>4049-4055</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.cgd.7b00574</ELocationID>
<Abstract>
<AbstractText>Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies (
<i>n</i>
≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments (
<i>n</i>
≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nordquist</LastName>
<ForeName>Kyle A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schaab</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sha</LastName>
<ForeName>Jierui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bond</LastName>
<ForeName>Andrew H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>DeNovX, 3440 South Dearborn Street, Lab 204 S, Chicago, Illinois 60616, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cryst Growth Des</MedlineTA>
<NlmUniqueID>101261892</NlmUniqueID>
<ISSNLinking>1528-7483</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28966560</ArticleId>
<ArticleId IdType="doi">10.1021/acs.cgd.7b00574</ArticleId>
<ArticleId IdType="pmc">PMC5613273</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Eur J Pharm Biopharm. 2009 Jan;71(1):23-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2011 Sep;55(1):12-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2010 Mar;11(1):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20177794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2011 May 3;27(9):5324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21480598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Jun 17;52(25):6380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2014 Aug 26;30(33):10133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25073014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 Mar;71(Pt 3):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25760603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2004 Apr 1;34(3):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15261074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jan;1838(1 Pt A):78-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:259-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2004 Nov;34(3):254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15325645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2010 Nov;2(11):2346-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20936214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000077 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000077 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28966560
   |texte=   Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:28966560" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020