Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.

Identifieur interne : 000224 ( Main/Exploration ); précédent : 000223; suivant : 000225

Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.

Auteurs : Stephanie Breher-Esch [Allemagne] ; Nishika Sahini [Allemagne] ; Anna Trincone [Allemagne] ; Christin Wallstab [Allemagne] ; Jürgen Borlak [Allemagne]

Source :

RBID : pubmed:30547786

Descripteurs français

English descriptors

Abstract

BACKGROUND

Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures.

METHODS

PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways.

RESULTS

Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance.

CONCLUSION

The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.


DOI: 10.1186/s12920-018-0438-7
PubMed: 30547786
PubMed Central: PMC6295111


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.</title>
<author>
<name sortKey="Breher Esch, Stephanie" sort="Breher Esch, Stephanie" uniqKey="Breher Esch S" first="Stephanie" last="Breher-Esch">Stephanie Breher-Esch</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sahini, Nishika" sort="Sahini, Nishika" uniqKey="Sahini N" first="Nishika" last="Sahini">Nishika Sahini</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trincone, Anna" sort="Trincone, Anna" uniqKey="Trincone A" first="Anna" last="Trincone">Anna Trincone</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wallstab, Christin" sort="Wallstab, Christin" uniqKey="Wallstab C" first="Christin" last="Wallstab">Christin Wallstab</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Borlak, Jurgen" sort="Borlak, Jurgen" uniqKey="Borlak J" first="Jürgen" last="Borlak">Jürgen Borlak</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Borlak.Juergen@mh-hannover.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30547786</idno>
<idno type="pmid">30547786</idno>
<idno type="doi">10.1186/s12920-018-0438-7</idno>
<idno type="pmc">PMC6295111</idno>
<idno type="wicri:Area/Main/Corpus">000169</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000169</idno>
<idno type="wicri:Area/Main/Curation">000169</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000169</idno>
<idno type="wicri:Area/Main/Exploration">000169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.</title>
<author>
<name sortKey="Breher Esch, Stephanie" sort="Breher Esch, Stephanie" uniqKey="Breher Esch S" first="Stephanie" last="Breher-Esch">Stephanie Breher-Esch</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sahini, Nishika" sort="Sahini, Nishika" uniqKey="Sahini N" first="Nishika" last="Sahini">Nishika Sahini</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trincone, Anna" sort="Trincone, Anna" uniqKey="Trincone A" first="Anna" last="Trincone">Anna Trincone</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wallstab, Christin" sort="Wallstab, Christin" uniqKey="Wallstab C" first="Christin" last="Wallstab">Christin Wallstab</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Borlak, Jurgen" sort="Borlak, Jurgen" uniqKey="Borlak J" first="Jürgen" last="Borlak">Jürgen Borlak</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Borlak.Juergen@mh-hannover.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC medical genomics</title>
<idno type="eISSN">1755-8794</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carnitine O-Palmitoyltransferase (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Endoplasmic Reticulum Stress (drug effects)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Genomics (methods)</term>
<term>Hep G2 Cells (MeSH)</term>
<term>Hepatocytes (cytology)</term>
<term>Hepatocytes (drug effects)</term>
<term>Hepatocytes (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Lipid Droplets (chemistry)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Non-alcoholic Fatty Liver Disease (drug therapy)</term>
<term>Non-alcoholic Fatty Liver Disease (genetics)</term>
<term>Non-alcoholic Fatty Liver Disease (pathology)</term>
<term>Oleic Acid (pharmacology)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (chemistry)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (metabolism)</term>
<term>Palmitic Acid (pharmacology)</term>
<term>Perilipin-2 (metabolism)</term>
<term>Qb-SNARE Proteins (chemistry)</term>
<term>Qb-SNARE Proteins (metabolism)</term>
<term>Qc-SNARE Proteins (chemistry)</term>
<term>Qc-SNARE Proteins (metabolism)</term>
<term>Tumor Necrosis Factor-alpha (pharmacology)</term>
<term>Vesicle-Associated Membrane Protein 3 (chemistry)</term>
<term>Vesicle-Associated Membrane Protein 3 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide oléique (pharmacologie)</term>
<term>Acide palmitique (pharmacologie)</term>
<term>Carnitine O-palmitoyltransferase (métabolisme)</term>
<term>Cellules HepG2 (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Facteur de nécrose tumorale alpha (pharmacologie)</term>
<term>Glycoprotéines membranaires (composition chimique)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Gouttelettes lipidiques (composition chimique)</term>
<term>Génomique (méthodes)</term>
<term>Humains (MeSH)</term>
<term>Hépatocytes (cytologie)</term>
<term>Hépatocytes (effets des médicaments et des substances chimiques)</term>
<term>Hépatocytes (métabolisme)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Mitochondries (effets des médicaments et des substances chimiques)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxidoreductases acting on sulfur group donors (composition chimique)</term>
<term>Oxidoreductases acting on sulfur group donors (métabolisme)</term>
<term>Protéines Qb-SNARE (composition chimique)</term>
<term>Protéines Qb-SNARE (métabolisme)</term>
<term>Protéines Qc-SNARE (composition chimique)</term>
<term>Protéines Qc-SNARE (métabolisme)</term>
<term>Périlipine-2 (métabolisme)</term>
<term>Régulation de l'expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Stress du réticulum endoplasmique (effets des médicaments et des substances chimiques)</term>
<term>Stéatose hépatique non alcoolique (anatomopathologie)</term>
<term>Stéatose hépatique non alcoolique (génétique)</term>
<term>Stéatose hépatique non alcoolique (traitement médicamenteux)</term>
<term>Synaptobrévine-3 (composition chimique)</term>
<term>Synaptobrévine-3 (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Qb-SNARE Proteins</term>
<term>Qc-SNARE Proteins</term>
<term>Vesicle-Associated Membrane Protein 3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carnitine O-Palmitoyltransferase</term>
<term>Membrane Glycoproteins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Perilipin-2</term>
<term>Qb-SNARE Proteins</term>
<term>Qc-SNARE Proteins</term>
<term>Vesicle-Associated Membrane Protein 3</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Stéatose hépatique non alcoolique</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Lipid Droplets</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Gouttelettes lipidiques</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines Qb-SNARE</term>
<term>Protéines Qc-SNARE</term>
<term>Synaptobrévine-3</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Hépatocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hepatocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endoplasmic Reticulum Stress</term>
<term>Gene Expression Regulation</term>
<term>Hepatocytes</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Non-alcoholic Fatty Liver Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Hépatocytes</term>
<term>Mitochondries</term>
<term>Régulation de l'expression des gènes</term>
<term>Stress du réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Non-alcoholic Fatty Liver Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Stéatose hépatique non alcoolique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hepatocytes</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carnitine O-palmitoyltransferase</term>
<term>Glycoprotéines membranaires</term>
<term>Hépatocytes</term>
<term>Mitochondries</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines Qb-SNARE</term>
<term>Protéines Qc-SNARE</term>
<term>Périlipine-2</term>
<term>Synaptobrévine-3</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Non-alcoholic Fatty Liver Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide oléique</term>
<term>Acide palmitique</term>
<term>Facteur de nécrose tumorale alpha</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Oleic Acid</term>
<term>Palmitic Acid</term>
<term>Tumor Necrosis Factor-alpha</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Stéatose hépatique non alcoolique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Hep G2 Cells</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HepG2</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Microscopie de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30547786</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1755-8794</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>BMC medical genomics</Title>
<ISOAbbreviation>BMC Med Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.</ArticleTitle>
<Pagination>
<MedlinePgn>111</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12920-018-0438-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Breher-Esch</LastName>
<ForeName>Stephanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahini</LastName>
<ForeName>Nishika</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trincone</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wallstab</LastName>
<ForeName>Christin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borlak</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-1558-9519</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Borlak.Juergen@mh-hannover.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Med Genomics</MedlineTA>
<NlmUniqueID>101319628</NlmUniqueID>
<ISSNLinking>1755-8794</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000602982">PLIN2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000070780">Perilipin-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050766">Qb-SNARE Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050767">Qc-SNARE Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100493">SNAP23 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014409">Tumor Necrosis Factor-alpha</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051040">Vesicle-Associated Membrane Protein 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2UMI9U37CP</RegistryNumber>
<NameOfSubstance UI="D019301">Oleic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2V16EO95H1</RegistryNumber>
<NameOfSubstance UI="D019308">Palmitic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="C485767">ERO1B protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.21</RegistryNumber>
<NameOfSubstance UI="D002334">Carnitine O-Palmitoyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.21</RegistryNumber>
<NameOfSubstance UI="C577474">carnitine palmitoyltransferase 1A, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002334" MajorTopicYN="N">Carnitine O-Palmitoyltransferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="N">Endoplasmic Reticulum Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056945" MajorTopicYN="N">Hep G2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022781" MajorTopicYN="N">Hepatocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066292" MajorTopicYN="N">Lipid Droplets</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065626" MajorTopicYN="N">Non-alcoholic Fatty Liver Disease</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019301" MajorTopicYN="N">Oleic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="N">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019308" MajorTopicYN="N">Palmitic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070780" MajorTopicYN="N">Perilipin-2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050766" MajorTopicYN="N">Qb-SNARE Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050767" MajorTopicYN="N">Qc-SNARE Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014409" MajorTopicYN="N">Tumor Necrosis Factor-alpha</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051040" MajorTopicYN="N">Vesicle-Associated Membrane Protein 3</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Drug targets; nuclear receptor/PPARs</Keyword>
<Keyword MajorTopicYN="Y">LD-associated proteins</Keyword>
<Keyword MajorTopicYN="Y">Non-alcoholic fatty liver disease (NAFLD)</Keyword>
<Keyword MajorTopicYN="Y">TNFα</Keyword>
<Keyword MajorTopicYN="Y">Transcriptomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30547786</ArticleId>
<ArticleId IdType="doi">10.1186/s12920-018-0438-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12920-018-0438-7</ArticleId>
<ArticleId IdType="pmc">PMC6295111</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Toxicol Sci. 2009 Dec;112(2):507-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Apr 1;182(7):4321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2015 Nov 1;98(1):167-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26394026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2012 Apr 15;302(8):G850-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2012 Nov;57(5):1147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22732510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2014 Feb 21;20(7):1768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2008 Sep;60(3):311-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2014 May 09;5:112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Ther. 2011 Feb;29(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20337636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2010 Nov;52(5):1632-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20799351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 18;284(38):25593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2012 Apr;56(4):952-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22173168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 19;7:40855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28102311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Gastroenterol. 2014 Jul;48(6):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24921212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2012 May;32(5):1094-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2014 Apr;54:86-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24607340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;438:77-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18413242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Commun Signal. 2015 Apr 10;13:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25889964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Lipidol. 2010 Jun;21(3):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20480548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2015 Nov;26(11):608-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26490383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2016 Dec;27(12):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27659144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2000 Sep;14(9):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10976925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aliment Pharmacol Ther. 2012 Jan;35(1):66-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2018 Mar;59(3):531-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29326160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2012 Mar;56(3):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2015 Nov 05;6:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26594197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 23;5(12):e15030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 2007 Jun;127(6):954-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17509993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Apr;1861(4):269-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26778751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 18;10(5):e0126823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25992653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C215-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26108664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2007 Nov;27(11):2420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1822(9):1411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22366061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e29042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22205993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2001 Aug;12(6):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11445444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2013 Feb 25;24(4):384-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Medchemcomm. 2016 Apr 1;7(4):612-622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2002 Mar;54(1):129-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11870262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korean J Physiol Pharmacol. 2014 Aug;18(4):333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25177166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2014 Sep;147(3):577-594.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25066692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1043-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 18;9(3):e92187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 06;8(9):e73696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24040030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2012 Aug 21;32:17-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22809102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2014 Aug;28(5):784-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24685772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Res Hepatol Gastroenterol. 2015 Sep;39 Suppl 1:S35-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26160475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 12;8(11):e78870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24265725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2015 Jul 21;5(3):1563-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26197341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23460848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Diabetes Rev. 2016;12(3):223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26239835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2013 Apr-Jun;34(2-3):516-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolism. 2015 Mar;64(3):380-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013;3:1187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2008 Dec;149(12):6018-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:687-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Oct 9;580(23):5533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Jan 27;109(3):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2016 Aug 21;22(31):7006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27610012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2010 Apr 1;79(7):990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19913517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Targets. 2005 Aug;9(4):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16083348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 22;10(4):e0124867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25901575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Aug 9;437(4):597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23850676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2015 Feb 14;21(6):1718-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25684936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e30014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2012 Feb 28;18(8):727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jul;35(13):2356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25918248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2002 Feb;65(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Apr 1;122(Pt 7):912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 14;289(7):4432-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24356970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2014 Dec;46(12):1041-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Toxicol. 1999;15(6):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2012 Aug;26(8):3282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22562833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Sep 25;465(3):534-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2002 Sep;43(9):1390-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12235170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2016 Aug 2;15(15):2033-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27260854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 03;9(11):e111767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25365322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2010 Nov 14;16(42):5286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21072891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Mar 15;122(Pt 6):749-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Rev Med Pharmacol Sci. 2014;18(4):457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24610610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Res. 2016 Nov;177:41-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27376874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22606335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2005 Jun;54(6):1684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Aug 1;21(4):588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23991914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2003 Apr 15;188(2):81-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12691726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Liver Dis. 2013 Nov;33(4):312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24222089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014 Apr 10;15(4):R63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24721177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Gastroenterol. 2014 Sep 14;20(34):12082-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
<li>Hanovre</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Breher Esch, Stephanie" sort="Breher Esch, Stephanie" uniqKey="Breher Esch S" first="Stephanie" last="Breher-Esch">Stephanie Breher-Esch</name>
</region>
<name sortKey="Borlak, Jurgen" sort="Borlak, Jurgen" uniqKey="Borlak J" first="Jürgen" last="Borlak">Jürgen Borlak</name>
<name sortKey="Sahini, Nishika" sort="Sahini, Nishika" uniqKey="Sahini N" first="Nishika" last="Sahini">Nishika Sahini</name>
<name sortKey="Trincone, Anna" sort="Trincone, Anna" uniqKey="Trincone A" first="Anna" last="Trincone">Anna Trincone</name>
<name sortKey="Wallstab, Christin" sort="Wallstab, Christin" uniqKey="Wallstab C" first="Christin" last="Wallstab">Christin Wallstab</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30547786
   |texte=   Genomics of lipid-laden human hepatocyte cultures enables drug target screening for the treatment of non-alcoholic fatty liver disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30547786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020