Serveur d'exploration sur les pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.

Identifieur interne : 000959 ( Main/Exploration ); précédent : 000958; suivant : 000960

Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.

Auteurs : Huifang Sun [République populaire de Chine] ; Baoyou Shi ; Darren A. Lytle ; Yaohui Bai ; Dongsheng Wang

Source :

RBID : pubmed:24509822

Descripteurs français

English descriptors

Abstract

To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products.

DOI: 10.1039/c3em00544e
PubMed: 24509822


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.</title>
<author>
<name sortKey="Sun, Huifang" sort="Sun, Huifang" uniqKey="Sun H" first="Huifang" last="Sun">Huifang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China. byshi@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Baoyou" sort="Shi, Baoyou" uniqKey="Shi B" first="Baoyou" last="Shi">Baoyou Shi</name>
</author>
<author>
<name sortKey="Lytle, Darren A" sort="Lytle, Darren A" uniqKey="Lytle D" first="Darren A" last="Lytle">Darren A. Lytle</name>
</author>
<author>
<name sortKey="Bai, Yaohui" sort="Bai, Yaohui" uniqKey="Bai Y" first="Yaohui" last="Bai">Yaohui Bai</name>
</author>
<author>
<name sortKey="Wang, Dongsheng" sort="Wang, Dongsheng" uniqKey="Wang D" first="Dongsheng" last="Wang">Dongsheng Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24509822</idno>
<idno type="pmid">24509822</idno>
<idno type="doi">10.1039/c3em00544e</idno>
<idno type="wicri:Area/Main/Corpus">000962</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000962</idno>
<idno type="wicri:Area/Main/Curation">000962</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000962</idno>
<idno type="wicri:Area/Main/Exploration">000962</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.</title>
<author>
<name sortKey="Sun, Huifang" sort="Sun, Huifang" uniqKey="Sun H" first="Huifang" last="Sun">Huifang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China. byshi@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Baoyou" sort="Shi, Baoyou" uniqKey="Shi B" first="Baoyou" last="Shi">Baoyou Shi</name>
</author>
<author>
<name sortKey="Lytle, Darren A" sort="Lytle, Darren A" uniqKey="Lytle D" first="Darren A" last="Lytle">Darren A. Lytle</name>
</author>
<author>
<name sortKey="Bai, Yaohui" sort="Bai, Yaohui" uniqKey="Bai Y" first="Yaohui" last="Bai">Yaohui Bai</name>
</author>
<author>
<name sortKey="Wang, Dongsheng" sort="Wang, Dongsheng" uniqKey="Wang D" first="Dongsheng" last="Wang">Dongsheng Wang</name>
</author>
</analytic>
<series>
<title level="j">Environmental science. Processes & impacts</title>
<idno type="eISSN">2050-7895</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Corrosion (MeSH)</term>
<term>Drainage, Sanitary (MeSH)</term>
<term>Drinking Water (chemistry)</term>
<term>Drinking Water (microbiology)</term>
<term>Iron (metabolism)</term>
<term>Water Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries (métabolisme)</term>
<term>Corrosion (MeSH)</term>
<term>Drainage sanitaire (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Eau de boisson (composition chimique)</term>
<term>Eau de boisson (microbiologie)</term>
<term>Fer (métabolisme)</term>
<term>Microbiologie de l'eau (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Drinking Water</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau de boisson</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Eau de boisson</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="microbiology" xml:lang="en">
<term>Drinking Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Fer</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Corrosion</term>
<term>Drainage, Sanitary</term>
<term>Water Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Corrosion</term>
<term>Drainage sanitaire</term>
<term>Dépollution biologique de l'environnement</term>
<term>Microbiologie de l'eau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24509822</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-7895</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science. Processes & impacts</Title>
<ISOAbbreviation>Environ Sci Process Impacts</ISOAbbreviation>
</Journal>
<ArticleTitle>Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.</ArticleTitle>
<Pagination>
<MedlinePgn>576-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3em00544e</ELocationID>
<Abstract>
<AbstractText>To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Huifang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China. byshi@rcees.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Baoyou</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lytle</LastName>
<ForeName>Darren A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Yaohui</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Dongsheng</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Sci Process Impacts</MedlineTA>
<NlmUniqueID>101601576</NlmUniqueID>
<ISSNLinking>2050-7887</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060766">Drinking Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003343" MajorTopicYN="N">Corrosion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004323" MajorTopicYN="Y">Drainage, Sanitary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060766" MajorTopicYN="N">Drinking Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014871" MajorTopicYN="Y">Water Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24509822</ArticleId>
<ArticleId IdType="doi">10.1039/c3em00544e</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bai, Yaohui" sort="Bai, Yaohui" uniqKey="Bai Y" first="Yaohui" last="Bai">Yaohui Bai</name>
<name sortKey="Lytle, Darren A" sort="Lytle, Darren A" uniqKey="Lytle D" first="Darren A" last="Lytle">Darren A. Lytle</name>
<name sortKey="Shi, Baoyou" sort="Shi, Baoyou" uniqKey="Shi B" first="Baoyou" last="Shi">Baoyou Shi</name>
<name sortKey="Wang, Dongsheng" sort="Wang, Dongsheng" uniqKey="Wang D" first="Dongsheng" last="Wang">Dongsheng Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Sun, Huifang" sort="Sun, Huifang" uniqKey="Sun H" first="Huifang" last="Sun">Huifang Sun</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000959 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000959 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24509822
   |texte=   Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24509822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 09:39:13 2020. Site generation: Fri Nov 20 09:41:54 2020