Serveur d'exploration sur les pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.

Identifieur interne : 000705 ( Main/Exploration ); précédent : 000704; suivant : 000706

Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.

Auteurs : Patrick B F. O'Connor [Irlande (pays)] ; Dmitry E. Andreev [Irlande (pays), Russie] ; Pavel V. Baranov [Irlande (pays)]

Source :

RBID : pubmed:27698342

Descripteurs français

English descriptors

Abstract

Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities.

DOI: 10.1038/ncomms12915
PubMed: 27698342
PubMed Central: PMC5059445


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.</title>
<author>
<name sortKey="O Connor, Patrick B F" sort="O Connor, Patrick B F" uniqKey="O Connor P" first="Patrick B F" last="O'Connor">Patrick B F. O'Connor</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreev, Dmitry E" sort="Andreev, Dmitry E" uniqKey="Andreev D" first="Dmitry E" last="Andreev">Dmitry E. Andreev</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baranov, Pavel V" sort="Baranov, Pavel V" uniqKey="Baranov P" first="Pavel V" last="Baranov">Pavel V. Baranov</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27698342</idno>
<idno type="pmid">27698342</idno>
<idno type="doi">10.1038/ncomms12915</idno>
<idno type="pmc">PMC5059445</idno>
<idno type="wicri:Area/Main/Corpus">000605</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000605</idno>
<idno type="wicri:Area/Main/Curation">000605</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000605</idno>
<idno type="wicri:Area/Main/Exploration">000605</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.</title>
<author>
<name sortKey="O Connor, Patrick B F" sort="O Connor, Patrick B F" uniqKey="O Connor P" first="Patrick B F" last="O'Connor">Patrick B F. O'Connor</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreev, Dmitry E" sort="Andreev, Dmitry E" uniqKey="Andreev D" first="Dmitry E" last="Andreev">Dmitry E. Andreev</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baranov, Pavel V" sort="Baranov, Pavel V" uniqKey="Baranov P" first="Pavel V" last="Baranov">Pavel V. Baranov</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biochemistry and Cell Biology, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Codon (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Ribosomes (chemistry)</term>
<term>Ribosomes (ultrastructure)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Cadres ouverts de lecture (MeSH)</term>
<term>Codon (MeSH)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Levures (métabolisme)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Ribosomes (composition chimique)</term>
<term>Ribosomes (ultrastructure)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Codon</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Mice</term>
<term>Models, Statistical</term>
<term>Nucleic Acid Conformation</term>
<term>Open Reading Frames</term>
<term>Protein Biosynthesis</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cadres ouverts de lecture</term>
<term>Codon</term>
<term>Conformation d'acide nucléique</term>
<term>Humains</term>
<term>Modèles statistiques</term>
<term>Reproductibilité des résultats</term>
<term>Ribosomes</term>
<term>Régulation de l'expression des gènes</term>
<term>Simulation numérique</term>
<term>Souris</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27698342</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
<Month>10</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.</ArticleTitle>
<Pagination>
<MedlinePgn>12915</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms12915</ELocationID>
<Abstract>
<AbstractText>Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Connor</LastName>
<ForeName>Patrick B F</ForeName>
<Initials>PB</Initials>
<AffiliationInfo>
<Affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andreev</LastName>
<ForeName>Dmitry E</ForeName>
<Initials>DE</Initials>
<AffiliationInfo>
<Affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baranov</LastName>
<ForeName>Pavel V</ForeName>
<Initials>PV</Initials>
<AffiliationInfo>
<Affiliation>School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27698342</ArticleId>
<ArticleId IdType="pii">ncomms12915</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms12915</ArticleId>
<ArticleId IdType="pmc">PMC5059445</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2011 Nov 03;12(11):R110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Mar;24(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Aug 12;466(7308):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20703300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 10;324(5924):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19213877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2014 Dec 23;10:770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jul 09;16:513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26155933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Nov;22(11):2219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22593554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(24):8657-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2016 Jan;397(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26351919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Sep;16(9):517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26260261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014;15 Suppl 6:S13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25572668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(11):e1002755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Feb 7;49(3):439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23290915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2011 Nov 24;6:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Feb 22;485(7396):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1088-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Jan 26;4:e03971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):19401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Aug 13;34(33):10924-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(10):476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25273840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 17;14(4):R32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23431150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):e134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Dec;17(12):2063-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22045228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(1):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Dec 5;384(1):73-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18822297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 11;147(4):789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22056041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 28;484(7395):538-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22456704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2016;13(3):316-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26821742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Nov;25(11):1610-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(3):e1002603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22479199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):574-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24120665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24259432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(2):1019-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25550424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Dec;24(12):2011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Feb 7;49(3):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23290916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Feb 23;14 (7):1787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26876183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Feb 3;335(6068):552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Apr;41(8):4573-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Jul 22;12(7):e1001910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25051069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 May 09;3:e01257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24842990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(3):e1001508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23554576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 11;11(12):e1005732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26656907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 20;153(7):1589-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 27;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 11;158(6):1362-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Apr 24;157(3):624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Aug;42(14):9171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056313</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Irlande (pays)</li>
<li>Russie</li>
</country>
<region>
<li>District fédéral central</li>
</region>
<settlement>
<li>Moscou</li>
</settlement>
</list>
<tree>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="O Connor, Patrick B F" sort="O Connor, Patrick B F" uniqKey="O Connor P" first="Patrick B F" last="O'Connor">Patrick B F. O'Connor</name>
</noRegion>
<name sortKey="Andreev, Dmitry E" sort="Andreev, Dmitry E" uniqKey="Andreev D" first="Dmitry E" last="Andreev">Dmitry E. Andreev</name>
<name sortKey="Baranov, Pavel V" sort="Baranov, Pavel V" uniqKey="Baranov P" first="Pavel V" last="Baranov">Pavel V. Baranov</name>
</country>
<country name="Russie">
<region name="District fédéral central">
<name sortKey="Andreev, Dmitry E" sort="Andreev, Dmitry E" uniqKey="Andreev D" first="Dmitry E" last="Andreev">Dmitry E. Andreev</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000705 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000705 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27698342
   |texte=   Comparative survey of the relative impact of mRNA features on local ribosome profiling read density.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27698342" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 09:39:13 2020. Site generation: Fri Nov 20 09:41:54 2020