Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.

Identifieur interne : 000594 ( Main/Corpus ); précédent : 000593; suivant : 000595

Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.

Auteurs : Sajid Ali ; Pierre Gladieux ; Marc Leconte ; Angélique Gautier ; Annemarie F. Justesen ; Mogens S. Hovm Ller ; Jérôme Enjalbert ; Claude De Vallavieille-Pope

Source :

RBID : pubmed:24465211

English descriptors

Abstract

Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.

DOI: 10.1371/journal.ppat.1003903
PubMed: 24465211
PubMed Central: PMC3900651

Links to Exploration step

pubmed:24465211

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.</title>
<author>
<name sortKey="Ali, Sajid" sort="Ali, Sajid" uniqKey="Ali S" first="Sajid" last="Ali">Sajid Ali</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France ; Institute of Biotechnology and Genetic Engineering, the University of Agriculture, Peshawar, Pakistan ; Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gladieux, Pierre" sort="Gladieux, Pierre" uniqKey="Gladieux P" first="Pierre" last="Gladieux">Pierre Gladieux</name>
<affiliation>
<nlm:affiliation>UMR 8079 Ecologie Systematique Evolution, Univ. Paris-Sud., CNRS-F, Orsay, France ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leconte, Marc" sort="Leconte, Marc" uniqKey="Leconte M" first="Marc" last="Leconte">Marc Leconte</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gautier, Angelique" sort="Gautier, Angelique" uniqKey="Gautier A" first="Angélique" last="Gautier">Angélique Gautier</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Justesen, Annemarie F" sort="Justesen, Annemarie F" uniqKey="Justesen A" first="Annemarie F" last="Justesen">Annemarie F. Justesen</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hovm Ller, Mogens S" sort="Hovm Ller, Mogens S" uniqKey="Hovm Ller M" first="Mogens S" last="Hovm Ller">Mogens S. Hovm Ller</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enjalbert, Jerome" sort="Enjalbert, Jerome" uniqKey="Enjalbert J" first="Jérôme" last="Enjalbert">Jérôme Enjalbert</name>
<affiliation>
<nlm:affiliation>INRA UMR 320 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vallavieille Pope, Claude" sort="De Vallavieille Pope, Claude" uniqKey="De Vallavieille Pope C" first="Claude" last="De Vallavieille-Pope">Claude De Vallavieille-Pope</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24465211</idno>
<idno type="pmid">24465211</idno>
<idno type="doi">10.1371/journal.ppat.1003903</idno>
<idno type="pmc">PMC3900651</idno>
<idno type="wicri:Area/Main/Corpus">000594</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000594</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.</title>
<author>
<name sortKey="Ali, Sajid" sort="Ali, Sajid" uniqKey="Ali S" first="Sajid" last="Ali">Sajid Ali</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France ; Institute of Biotechnology and Genetic Engineering, the University of Agriculture, Peshawar, Pakistan ; Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gladieux, Pierre" sort="Gladieux, Pierre" uniqKey="Gladieux P" first="Pierre" last="Gladieux">Pierre Gladieux</name>
<affiliation>
<nlm:affiliation>UMR 8079 Ecologie Systematique Evolution, Univ. Paris-Sud., CNRS-F, Orsay, France ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leconte, Marc" sort="Leconte, Marc" uniqKey="Leconte M" first="Marc" last="Leconte">Marc Leconte</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gautier, Angelique" sort="Gautier, Angelique" uniqKey="Gautier A" first="Angélique" last="Gautier">Angélique Gautier</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Justesen, Annemarie F" sort="Justesen, Annemarie F" uniqKey="Justesen A" first="Annemarie F" last="Justesen">Annemarie F. Justesen</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hovm Ller, Mogens S" sort="Hovm Ller, Mogens S" uniqKey="Hovm Ller M" first="Mogens S" last="Hovm Ller">Mogens S. Hovm Ller</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enjalbert, Jerome" sort="Enjalbert, Jerome" uniqKey="Enjalbert J" first="Jérôme" last="Enjalbert">Jérôme Enjalbert</name>
<affiliation>
<nlm:affiliation>INRA UMR 320 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vallavieille Pope, Claude" sort="De Vallavieille Pope, Claude" uniqKey="De Vallavieille Pope C" first="Claude" last="De Vallavieille-Pope">Claude De Vallavieille-Pope</name>
<affiliation>
<nlm:affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Humans</term>
<term>Microsatellite Repeats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24465211</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003903</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1003903</ELocationID>
<Abstract>
<AbstractText>Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Sajid</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France ; Institute of Biotechnology and Genetic Engineering, the University of Agriculture, Peshawar, Pakistan ; Department of Agroecology, Aarhus University, Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gladieux</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>UMR 8079 Ecologie Systematique Evolution, Univ. Paris-Sud., CNRS-F, Orsay, France ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leconte</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gautier</LastName>
<ForeName>Angélique</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Justesen</LastName>
<ForeName>Annemarie F</ForeName>
<Initials>AF</Initials>
<AffiliationInfo>
<Affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hovmøller</LastName>
<ForeName>Mogens S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Agroecology, Aarhus University, Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Enjalbert</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>INRA UMR 320 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Vallavieille-Pope</LastName>
<ForeName>Claude</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="Y">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="Y">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24465211</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1003903</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-13-02068</ArticleId>
<ArticleId IdType="pmc">PMC3900651</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2005 Jun;14(7):2065-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Biol. 2011 Nov;32(6):725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jan;139(1):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Oct;47(10):828-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:197-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21599494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 23;329(5990):369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jul 28;11:401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jul;176(3):1635-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Dec;162(4):2025-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(5):e1002703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Jul;25(7):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20434790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17614-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17978179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2010 Aug;105(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Nov;15(13):3895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Apr;46(4):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Dec 1;24(23):2713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1978 Jul;89(3):583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):441-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 26;297(5581):537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Nov 1;24(21):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jun;98(6):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jan 16;3(1):e1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18197265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Feb;23(3):603-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24354737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jan;99(1):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2011 Jul 20;4:240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21774816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:75-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Oct;18(20):4165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2010 Oct 15;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1915 Jul 9;42(1071):58-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1983;19(2):153-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6571220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Nov;38(6):1358-1370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 May;21(10):2519-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22439871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Sep;17(17):3818-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18673440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jul 15;23(14):1801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Apr;3(4):311-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 May;100(5):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20373963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000594 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000594 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24465211
   |texte=   Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24465211" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020