Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.

Identifieur interne : 000204 ( Main/Corpus ); précédent : 000203; suivant : 000205

De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.

Auteurs : Marisa E. Miller ; Ying Zhang ; Vahid Omidvar ; Jana Sperschneider ; Benjamin Schwessinger ; Castle Raley ; Jonathan M. Palmer ; Diana Garnica ; Narayana Upadhyaya ; John Rathjen ; Jennifer M. Taylor ; Robert F. Park ; Peter N. Dodds ; Cory D. Hirsch ; Shahryar F. Kianian ; Melania Figueroa

Source :

RBID : pubmed:29463655

English descriptors

Abstract

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae.

DOI: 10.1128/mBio.01650-17
PubMed: 29463655
PubMed Central: PMC5821079

Links to Exploration step

pubmed:29463655

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>De Novo</i>
Assembly and Phasing of Dikaryotic Genomes from Two Isolates of
<i>Puccinia coronata</i>
f. sp.
<i>avenae</i>
, the Causal Agent of Oat Crown Rust.</title>
<author>
<name sortKey="Miller, Marisa E" sort="Miller, Marisa E" uniqKey="Miller M" first="Marisa E" last="Miller">Marisa E. Miller</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ying" sort="Zhang, Ying" uniqKey="Zhang Y" first="Ying" last="Zhang">Ying Zhang</name>
<affiliation>
<nlm:affiliation>Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Omidvar, Vahid" sort="Omidvar, Vahid" uniqKey="Omidvar V" first="Vahid" last="Omidvar">Vahid Omidvar</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation>
<nlm:affiliation>Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Perth, WA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schwessinger, Benjamin" sort="Schwessinger, Benjamin" uniqKey="Schwessinger B" first="Benjamin" last="Schwessinger">Benjamin Schwessinger</name>
<affiliation>
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raley, Castle" sort="Raley, Castle" uniqKey="Raley C" first="Castle" last="Raley">Castle Raley</name>
<affiliation>
<nlm:affiliation>Leidos Biomedical Research, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Jonathan M" sort="Palmer, Jonathan M" uniqKey="Palmer J" first="Jonathan M" last="Palmer">Jonathan M. Palmer</name>
<affiliation>
<nlm:affiliation>Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, Wisconsin, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garnica, Diana" sort="Garnica, Diana" uniqKey="Garnica D" first="Diana" last="Garnica">Diana Garnica</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana" sort="Upadhyaya, Narayana" uniqKey="Upadhyaya N" first="Narayana" last="Upadhyaya">Narayana Upadhyaya</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rathjen, John" sort="Rathjen, John" uniqKey="Rathjen J" first="John" last="Rathjen">John Rathjen</name>
<affiliation>
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation>
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, School of Life and Environmental Sciences, University of Sydney, Narellan, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Cory D" sort="Hirsch, Cory D" uniqKey="Hirsch C" first="Cory D" last="Hirsch">Cory D. Hirsch</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kianian, Shahryar F" sort="Kianian, Shahryar F" uniqKey="Kianian S" first="Shahryar F" last="Kianian">Shahryar F. Kianian</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29463655</idno>
<idno type="pmid">29463655</idno>
<idno type="doi">10.1128/mBio.01650-17</idno>
<idno type="pmc">PMC5821079</idno>
<idno type="wicri:Area/Main/Corpus">000204</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000204</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>De Novo</i>
Assembly and Phasing of Dikaryotic Genomes from Two Isolates of
<i>Puccinia coronata</i>
f. sp.
<i>avenae</i>
, the Causal Agent of Oat Crown Rust.</title>
<author>
<name sortKey="Miller, Marisa E" sort="Miller, Marisa E" uniqKey="Miller M" first="Marisa E" last="Miller">Marisa E. Miller</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ying" sort="Zhang, Ying" uniqKey="Zhang Y" first="Ying" last="Zhang">Ying Zhang</name>
<affiliation>
<nlm:affiliation>Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Omidvar, Vahid" sort="Omidvar, Vahid" uniqKey="Omidvar V" first="Vahid" last="Omidvar">Vahid Omidvar</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation>
<nlm:affiliation>Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Perth, WA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schwessinger, Benjamin" sort="Schwessinger, Benjamin" uniqKey="Schwessinger B" first="Benjamin" last="Schwessinger">Benjamin Schwessinger</name>
<affiliation>
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raley, Castle" sort="Raley, Castle" uniqKey="Raley C" first="Castle" last="Raley">Castle Raley</name>
<affiliation>
<nlm:affiliation>Leidos Biomedical Research, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Jonathan M" sort="Palmer, Jonathan M" uniqKey="Palmer J" first="Jonathan M" last="Palmer">Jonathan M. Palmer</name>
<affiliation>
<nlm:affiliation>Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, Wisconsin, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garnica, Diana" sort="Garnica, Diana" uniqKey="Garnica D" first="Diana" last="Garnica">Diana Garnica</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana" sort="Upadhyaya, Narayana" uniqKey="Upadhyaya N" first="Narayana" last="Upadhyaya">Narayana Upadhyaya</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rathjen, John" sort="Rathjen, John" uniqKey="Rathjen J" first="John" last="Rathjen">John Rathjen</name>
<affiliation>
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation>
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, School of Life and Environmental Sciences, University of Sydney, Narellan, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation>
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Cory D" sort="Hirsch, Cory D" uniqKey="Hirsch C" first="Cory D" last="Hirsch">Cory D. Hirsch</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kianian, Shahryar F" sort="Kianian, Shahryar F" uniqKey="Kianian S" first="Shahryar F" last="Kianian">Shahryar F. Kianian</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Avena (microbiology)</term>
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (isolation & purification)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Avena</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genetic Variation</term>
<term>Genome, Fungal</term>
<term>Genotype</term>
<term>Molecular Sequence Annotation</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oat crown rust, caused by the fungus
<i>Pucinnia coronata</i>
f. sp.
<i>avenae</i>
, is a devastating disease that impacts worldwide oat production. For much of its life cycle,
<i>P. coronata</i>
f. sp.
<i>avenae</i>
is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous
<i>de novo</i>
genome assemblies of two
<i>P. coronata</i>
f. sp.
<i>avenae</i>
isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in
<i>P. coronata</i>
f. sp.
<i>avenae</i>
<b>IMPORTANCE</b>
Disease management strategies for oat crown rust are challenged by the rapid evolution of
<i>Puccinia coronata</i>
f. sp.
<i>avenae</i>
, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding
<i>P. coronata</i>
f. sp.
<i>avenae</i>
, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of
<i>P. coronata</i>
f. sp.
<i>avenae</i>
as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of
<i>P. coronata</i>
f. sp.
<i>avenae</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29463655</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>De Novo</i>
Assembly and Phasing of Dikaryotic Genomes from Two Isolates of
<i>Puccinia coronata</i>
f. sp.
<i>avenae</i>
, the Causal Agent of Oat Crown Rust.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01650-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01650-17</ELocationID>
<Abstract>
<AbstractText>Oat crown rust, caused by the fungus
<i>Pucinnia coronata</i>
f. sp.
<i>avenae</i>
, is a devastating disease that impacts worldwide oat production. For much of its life cycle,
<i>P. coronata</i>
f. sp.
<i>avenae</i>
is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous
<i>de novo</i>
genome assemblies of two
<i>P. coronata</i>
f. sp.
<i>avenae</i>
isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in
<i>P. coronata</i>
f. sp.
<i>avenae</i>
<b>IMPORTANCE</b>
Disease management strategies for oat crown rust are challenged by the rapid evolution of
<i>Puccinia coronata</i>
f. sp.
<i>avenae</i>
, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding
<i>P. coronata</i>
f. sp.
<i>avenae</i>
, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of
<i>P. coronata</i>
f. sp.
<i>avenae</i>
as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of
<i>P. coronata</i>
f. sp.
<i>avenae</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2018 Miller et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Marisa E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Omidvar</LastName>
<ForeName>Vahid</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sperschneider</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Perth, WA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwessinger</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-7194-2922</Identifier>
<AffiliationInfo>
<Affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raley</LastName>
<ForeName>Castle</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Leidos Biomedical Research, Frederick, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Palmer</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garnica</LastName>
<ForeName>Diana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Upadhyaya</LastName>
<ForeName>Narayana</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rathjen</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Jennifer M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Robert F</ForeName>
<Initials>RF</Initials>
<AffiliationInfo>
<Affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, School of Life and Environmental Sciences, University of Sydney, Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirsch</LastName>
<ForeName>Cory D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kianian</LastName>
<ForeName>Shahryar F</ForeName>
<Initials>SF</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figueroa</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-2636-661X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA shahryar.kianian@ars.usda.gov figue031@umn.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018554" MajorTopicYN="N">Avena</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="Y">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">effectors</Keyword>
<Keyword MajorTopicYN="Y">genomics</Keyword>
<Keyword MajorTopicYN="Y">oat</Keyword>
<Keyword MajorTopicYN="Y">rust fungi</Keyword>
<Keyword MajorTopicYN="Y">virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29463655</ArticleId>
<ArticleId IdType="pii">mBio.01650-17</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01650-17</ArticleId>
<ArticleId IdType="pmc">PMC5821079</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2014;1127:29-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24643550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 26;5:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25206357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 24;5:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24715894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):e164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:75-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jan;3(1):41-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):1859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):361-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27913634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1315-1329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27918080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Apr;24(4):688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Apr 28;12:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Apr 20;13(4):e1006241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14 Suppl 5:S7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24564786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 May;106(5):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26780434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14):2202-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2012 May;16(5):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 19;7:186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26925088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Feb 15;6:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jul 03;8(6):2044-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27289099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jan;98(1):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 22;17:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:219-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 30;7:45456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28358043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Sep 11;10(9):e1004329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1072-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 23;6:1168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 27;5:377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25221558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Mar;217(4):1764-1778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29243824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 23;14:274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2017 May 04;8:53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28523015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008 Jan 11;9(1):R7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18190707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1494-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Mar 1;32(5):767-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26559507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012 May;8(5):e1002529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22693437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 May;19(5):1047-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 04;5:15565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26531059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Oct 1;32(19):3021-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jul 13;13(7):e1006380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28704545</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000204 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000204 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29463655
   |texte=   De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29463655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020