Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).

Identifieur interne : 000071 ( Main/Exploration ); précédent : 000070; suivant : 000072

Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).

Auteurs : Si-Qi Tao [République populaire de Chine] ; Bin Cao [République populaire de Chine] ; Cheng-Ming Tian [République populaire de Chine] ; Ying-Mei Liang [République populaire de Chine]

Source :

RBID : pubmed:28830353

Descripteurs français

English descriptors

Abstract

BACKGROUND

Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection.

RESULTS

The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya.

CONCLUSION

This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.


DOI: 10.1186/s12864-017-4059-x
PubMed: 28830353
PubMed Central: PMC5567642


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).</title>
<author>
<name sortKey="Tao, Si Qi" sort="Tao, Si Qi" uniqKey="Tao S" first="Si-Qi" last="Tao">Si-Qi Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Bin" sort="Cao, Bin" uniqKey="Cao B" first="Bin" last="Cao">Bin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tian, Cheng Ming" sort="Tian, Cheng Ming" uniqKey="Tian C" first="Cheng-Ming" last="Tian">Cheng-Ming Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Ying Mei" sort="Liang, Ying Mei" uniqKey="Liang Y" first="Ying-Mei" last="Liang">Ying-Mei Liang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Museum of Beijing Forestry University, Beijing, 100083, China. liangym@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Museum of Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28830353</idno>
<idno type="pmid">28830353</idno>
<idno type="doi">10.1186/s12864-017-4059-x</idno>
<idno type="pmc">PMC5567642</idno>
<idno type="wicri:Area/Main/Corpus">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000056</idno>
<idno type="wicri:Area/Main/Curation">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000056</idno>
<idno type="wicri:Area/Main/Exploration">000056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).</title>
<author>
<name sortKey="Tao, Si Qi" sort="Tao, Si Qi" uniqKey="Tao S" first="Si-Qi" last="Tao">Si-Qi Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, Bin" sort="Cao, Bin" uniqKey="Cao B" first="Bin" last="Cao">Bin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tian, Cheng Ming" sort="Tian, Cheng Ming" uniqKey="Tian C" first="Cheng-Ming" last="Tian">Cheng-Ming Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Ying Mei" sort="Liang, Ying Mei" uniqKey="Liang Y" first="Ying-Mei" last="Liang">Ying-Mei Liang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Museum of Beijing Forestry University, Beijing, 100083, China. liangym@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Museum of Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Basidiomycota (physiology)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Fungal (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Basidiomycota (physiologie)</term>
<term>Gènes fongiques (génétique)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Basidiomycota</term>
<term>Genes, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Basidiomycota</term>
<term>Gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Genetic Variation</term>
<term>Molecular Sequence Annotation</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Annotation de séquence moléculaire</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Variation génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28830353</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).</ArticleTitle>
<Pagination>
<MedlinePgn>651</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-017-4059-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Si-Qi</ForeName>
<Initials>SQ</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Cheng-Ming</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Ying-Mei</ForeName>
<Initials>YM</Initials>
<AffiliationInfo>
<Affiliation>Museum of Beijing Forestry University, Beijing, 100083, China. liangym@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Candidate effectors</Keyword>
<Keyword MajorTopicYN="N">Comparative transcriptome</Keyword>
<Keyword MajorTopicYN="N">Divergence time</Keyword>
<Keyword MajorTopicYN="N">Orthologous gene</Keyword>
<Keyword MajorTopicYN="N">RNA-Seq</Keyword>
<Keyword MajorTopicYN="N">Rust fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28830353</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-017-4059-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-017-4059-x</ArticleId>
<ArticleId IdType="pmc">PMC5567642</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Database (Oxford). 2011 May 26;2011:bar020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jan 26;271(5248):470-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8560259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 10;4(6):e5863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2013 Feb;24(1):22-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23020966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 May;15(4):379-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Feb;209(3):1149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 02;16:656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26329285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 27;5:377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25221558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 07;6:29339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27385413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 20;5:416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1763(12):1707-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17055078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Apr 23;17 :300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27108408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jun 9;344(3):948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Dec;19(12):2318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Sep 22;12:458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21939539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1763(12 ):1733-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17055079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 26;5:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25206357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Mar 24;12:161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 14;14:329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23672467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 04;16:678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26338692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Sep 11;14:614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24025037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jan;43(1):8-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 14;8(8):e71350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23967197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jun;7(6):e1002070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2015 Aug;106(2):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25889708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 06;3(8):e2879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18663385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Nov 27;320:41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 21;4:456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24312107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jul;24(7):808-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21644839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1763(12):1527-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17010456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Sep;86(1-2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24934879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2013 May;159(Pt 5):833-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Jan;13(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:289-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17430087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24399359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Oct 1;17 (1):771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Feb;14(2):78-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 May 6;102:28-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 24;5:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24715894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e44408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Aug;28(8):799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tao, Si Qi" sort="Tao, Si Qi" uniqKey="Tao S" first="Si-Qi" last="Tao">Si-Qi Tao</name>
</noRegion>
<name sortKey="Cao, Bin" sort="Cao, Bin" uniqKey="Cao B" first="Bin" last="Cao">Bin Cao</name>
<name sortKey="Liang, Ying Mei" sort="Liang, Ying Mei" uniqKey="Liang Y" first="Ying-Mei" last="Liang">Ying-Mei Liang</name>
<name sortKey="Tian, Cheng Ming" sort="Tian, Cheng Ming" uniqKey="Tian C" first="Cheng-Ming" last="Tian">Cheng-Ming Tian</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000071 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000071 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28830353
   |texte=   Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28830353" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020