Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.

Identifieur interne : 000144 ( Main/Exploration ); précédent : 000143; suivant : 000145

Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.

Auteurs : Dale Godfrey [Danemark] ; Henrik Böhlenius ; Carsten Pedersen ; Ziguo Zhang ; Jeppe Emmersen ; Hans Thordal-Christensen

Source :

RBID : pubmed:20487537

Descripteurs français

English descriptors

Abstract

BACKGROUND

Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense.

RESULTS

In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented approximately 3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes.

CONCLUSION

In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.


DOI: 10.1186/1471-2164-11-317
PubMed: 20487537
PubMed Central: PMC2886064


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.</title>
<author>
<name sortKey="Godfrey, Dale" sort="Godfrey, Dale" uniqKey="Godfrey D" first="Dale" last="Godfrey">Dale Godfrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant and Soil Science Laboratory, Department of Agricultural and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Plant and Soil Science Laboratory, Department of Agricultural and Ecology, Faculty of Life Sciences, University of Copenhagen</wicri:regionArea>
<wicri:noRegion>University of Copenhagen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bohlenius, Henrik" sort="Bohlenius, Henrik" uniqKey="Bohlenius H" first="Henrik" last="Böhlenius">Henrik Böhlenius</name>
</author>
<author>
<name sortKey="Pedersen, Carsten" sort="Pedersen, Carsten" uniqKey="Pedersen C" first="Carsten" last="Pedersen">Carsten Pedersen</name>
</author>
<author>
<name sortKey="Zhang, Ziguo" sort="Zhang, Ziguo" uniqKey="Zhang Z" first="Ziguo" last="Zhang">Ziguo Zhang</name>
</author>
<author>
<name sortKey="Emmersen, Jeppe" sort="Emmersen, Jeppe" uniqKey="Emmersen J" first="Jeppe" last="Emmersen">Jeppe Emmersen</name>
</author>
<author>
<name sortKey="Thordal Christensen, Hans" sort="Thordal Christensen, Hans" uniqKey="Thordal Christensen H" first="Hans" last="Thordal-Christensen">Hans Thordal-Christensen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20487537</idno>
<idno type="pmid">20487537</idno>
<idno type="doi">10.1186/1471-2164-11-317</idno>
<idno type="pmc">PMC2886064</idno>
<idno type="wicri:Area/Main/Corpus">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000146</idno>
<idno type="wicri:Area/Main/Curation">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000146</idno>
<idno type="wicri:Area/Main/Exploration">000146</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.</title>
<author>
<name sortKey="Godfrey, Dale" sort="Godfrey, Dale" uniqKey="Godfrey D" first="Dale" last="Godfrey">Dale Godfrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant and Soil Science Laboratory, Department of Agricultural and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Plant and Soil Science Laboratory, Department of Agricultural and Ecology, Faculty of Life Sciences, University of Copenhagen</wicri:regionArea>
<wicri:noRegion>University of Copenhagen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bohlenius, Henrik" sort="Bohlenius, Henrik" uniqKey="Bohlenius H" first="Henrik" last="Böhlenius">Henrik Böhlenius</name>
</author>
<author>
<name sortKey="Pedersen, Carsten" sort="Pedersen, Carsten" uniqKey="Pedersen C" first="Carsten" last="Pedersen">Carsten Pedersen</name>
</author>
<author>
<name sortKey="Zhang, Ziguo" sort="Zhang, Ziguo" uniqKey="Zhang Z" first="Ziguo" last="Zhang">Ziguo Zhang</name>
</author>
<author>
<name sortKey="Emmersen, Jeppe" sort="Emmersen, Jeppe" uniqKey="Emmersen J" first="Jeppe" last="Emmersen">Jeppe Emmersen</name>
</author>
<author>
<name sortKey="Thordal Christensen, Hans" sort="Thordal Christensen, Hans" uniqKey="Thordal Christensen H" first="Hans" last="Thordal-Christensen">Hans Thordal-Christensen</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Ascomycota (classification)</term>
<term>Ascomycota (genetics)</term>
<term>Ascomycota (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (classification)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Fungal (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Protein Sorting Signals (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ascomycota (classification)</term>
<term>Ascomycota (génétique)</term>
<term>Ascomycota (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Gènes fongiques (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines fongiques (classification)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Signaux de triage des protéines (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Triticum (microbiologie)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Ascomycota</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ascomycota</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Fungal Proteins</term>
<term>Genes, Fungal</term>
<term>Protein Sorting Signals</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ascomycota</term>
<term>Gènes fongiques</term>
<term>Protéines fongiques</term>
<term>Signaux de triage des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ascomycota</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ascomycota</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Conserved Sequence</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Motifs d'acides aminés</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Séquence conservée</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented approximately 3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20487537</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.</ArticleTitle>
<Pagination>
<MedlinePgn>317</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-317</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented approximately 3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Godfrey</LastName>
<ForeName>Dale</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Plant and Soil Science Laboratory, Department of Agricultural and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Böhlenius</LastName>
<ForeName>Henrik</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pedersen</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Ziguo</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Emmersen</LastName>
<ForeName>Jeppe</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thordal-Christensen</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
<ArticleId IdType="pii">1471-2164-11-317</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-317</ArticleId>
<ArticleId IdType="pmc">PMC2886064</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 2001 Aug;33(3):195-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11495576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 1;20(19):5354-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11574467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2005 Jun;6(2):118-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15975222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2402-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 23;315(5815):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Nov;24(11):2583-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Mar;45(3):243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:189-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jan;9(1):59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Jun;9(12):3222-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19562796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Oct;8(10):2368-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 May;1(3):510-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Oct 15;4(10):e7463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19829700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521922</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bohlenius, Henrik" sort="Bohlenius, Henrik" uniqKey="Bohlenius H" first="Henrik" last="Böhlenius">Henrik Böhlenius</name>
<name sortKey="Emmersen, Jeppe" sort="Emmersen, Jeppe" uniqKey="Emmersen J" first="Jeppe" last="Emmersen">Jeppe Emmersen</name>
<name sortKey="Pedersen, Carsten" sort="Pedersen, Carsten" uniqKey="Pedersen C" first="Carsten" last="Pedersen">Carsten Pedersen</name>
<name sortKey="Thordal Christensen, Hans" sort="Thordal Christensen, Hans" uniqKey="Thordal Christensen H" first="Hans" last="Thordal-Christensen">Hans Thordal-Christensen</name>
<name sortKey="Zhang, Ziguo" sort="Zhang, Ziguo" uniqKey="Zhang Z" first="Ziguo" last="Zhang">Ziguo Zhang</name>
</noCountry>
<country name="Danemark">
<noRegion>
<name sortKey="Godfrey, Dale" sort="Godfrey, Dale" uniqKey="Godfrey D" first="Dale" last="Godfrey">Dale Godfrey</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000144 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000144 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20487537
   |texte=   Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20487537" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020