Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.

Identifieur interne : 000113 ( Main/Exploration ); précédent : 000112; suivant : 000114

Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.

Auteurs : Diana P. Garnica [Australie] ; Narayana M. Upadhyaya ; Peter N. Dodds ; John P. Rathjen

Source :

RBID : pubmed:23840606

Descripteurs français

English descriptors

Abstract

Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.

DOI: 10.1371/journal.pone.0067150
PubMed: 23840606
PubMed Central: PMC3694141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.</title>
<author>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, Australian Capital Territory</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23840606</idno>
<idno type="pmid">23840606</idno>
<idno type="doi">10.1371/journal.pone.0067150</idno>
<idno type="pmc">PMC3694141</idno>
<idno type="wicri:Area/Main/Corpus">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000111</idno>
<idno type="wicri:Area/Main/Curation">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000111</idno>
<idno type="wicri:Area/Main/Exploration">000111</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.</title>
<author>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, Australian Capital Territory</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (cytology)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Cell Cycle (genetics)</term>
<term>DNA Replication (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Triticum (microbiology)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (cytologie)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Basidiomycota (pathogénicité)</term>
<term>Cycle cellulaire (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Réplication de l'ADN (génétique)</term>
<term>Triticum (microbiologie)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Cell Cycle</term>
<term>DNA Replication</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Cycle cellulaire</term>
<term>Protéines de transport membranaire</term>
<term>Réplication de l'ADN</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23840606</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>e67150</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0067150</ELocationID>
<Abstract>
<AbstractText>Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garnica</LastName>
<ForeName>Diana P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Upadhyaya</LastName>
<ForeName>Narayana M</ForeName>
<Initials>NM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rathjen</LastName>
<ForeName>John P</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="N">DNA Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0067150</ArticleId>
<ArticleId IdType="pii">PONE-D-13-05903</ArticleId>
<ArticleId IdType="pmc">PMC3694141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 1996 Mar;20(1):30-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Mar;15(3):183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11952120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):451-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Jan 1;3(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Feb 28;275(5304):1314-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9036858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Dec 9;266(5191):1723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7992058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2010 Dec;9(12 ):1867-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2010 Apr;9(4):480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Jul;284(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jul;22(7):830-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Mar;42(3):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15707841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Mar;256(2):273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16499617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):842-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Aug;36(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 May 1;5(3):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Apr;16(4):2068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):293-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Feb;8(2):e1002514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22346750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Jun 04;8:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Jan;278(1):22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1997;51:73-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Aug;13(6):531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22145589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1703-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Clin Pract Suppl. 1990 Sep;71:41-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2091733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 May;100(5):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20373963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jan;43(1):8-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Feb;180(3):478-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9457847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jun 23;475(3):237-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Feb 26;7:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Sep;7(9):e1002235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Mar;25(3):279-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2001 Jun;147(Pt 6):1437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Mar;56(413):865-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1984 Feb 29;770(1):40-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6365165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 08;10:586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2005 Mar 18;4:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15774020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Dec;7(12):2017-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3686-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Mar;10(3):218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7654-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Jan 1;4(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Jan;12(1):2-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1991 Jul;137(7):1497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1955848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jun;11(6):458-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9612944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):693-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Oct;19(10 ):3280-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2890-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Oct;21(10):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 1;16(9):2179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Feb;22(2):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20190078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):1421-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1996;50:491-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8905089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Jan 26;117(Pt 3):487-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Jan 1;11(1):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22074047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Nov;50(4):1309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2003 Jul;107(Pt 7):854-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12967213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;712:79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21359802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 2;279(1):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1997 Jun;34(6):340-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9142740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 May 01;9:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18447959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2004;49:1-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Dec;2(6):1151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14665450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jul;7(7):2506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2886908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2003 Oct;1(1):E5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12929205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Aug;28(8):799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Apr;64(1):68-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1999 Jan 1;337 ( Pt 1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9854018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 22;336(6088):1590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723425</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23840606
   |texte=   Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23840606" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020