Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).

Identifieur interne : 000066 ( Main/Exploration ); précédent : 000065; suivant : 000067

Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).

Auteurs : Summi Dutta [Inde] ; Dhananjay Kumar [Inde] ; Shailendra Jha [Inde] ; Kumble Vinod Prabhu [Inde] ; Manish Kumar [Inde] ; Kunal Mukhopadhyay [Inde]

Source :

RBID : pubmed:28710588

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.


DOI: 10.1007/s00425-017-2744-2
PubMed: 28710588


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).</title>
<author>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, PDM University, Bahadurgarh, Haryana, 124507, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, PDM University, Bahadurgarh, Haryana, 124507</wicri:regionArea>
<wicri:noRegion>124507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jha, Shailendra" sort="Jha, Shailendra" uniqKey="Jha S" first="Shailendra" last="Jha">Shailendra Jha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28710588</idno>
<idno type="pmid">28710588</idno>
<idno type="doi">10.1007/s00425-017-2744-2</idno>
<idno type="wicri:Area/Main/Corpus">000059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000059</idno>
<idno type="wicri:Area/Main/Curation">000059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000059</idno>
<idno type="wicri:Area/Main/Exploration">000059</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).</title>
<author>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, PDM University, Bahadurgarh, Haryana, 124507, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, PDM University, Bahadurgarh, Haryana, 124507</wicri:regionArea>
<wicri:noRegion>124507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jha, Shailendra" sort="Jha, Shailendra" uniqKey="Jha S" first="Shailendra" last="Jha">Shailendra Jha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Banque de gènes (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Plant</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Feuilles de plante</term>
<term>Petit ARN interférent</term>
<term>Triticum</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Interactions hôte-pathogène</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28710588</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>246</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).</ArticleTitle>
<Pagination>
<MedlinePgn>939-957</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-017-2744-2</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="UNASSIGNED">A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dutta</LastName>
<ForeName>Summi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Dhananjay</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Botany, PDM University, Bahadurgarh, Haryana, 124507, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jha</LastName>
<ForeName>Shailendra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prabhu</LastName>
<ForeName>Kumble Vinod</ForeName>
<Initials>KV</Initials>
<AffiliationInfo>
<Affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Manish</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Kunal</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2213-8134</Identifier>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NPIU/TEQIP II/FIN/31/158</GrantID>
<Agency>Centre of Excellence, Technical Education Quality Improvement Program-II</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>BT/BI/04/065/04</GrantID>
<Agency>BTISNet SubDIC</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>9/554 (0026) 2010-EMR-I</GrantID>
<Agency>Council of Scientific and Industrial Research</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>IF140725</GrantID>
<Agency>Department of Science and Technology (IN) INSPIRE</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gene expression</Keyword>
<Keyword MajorTopicYN="N">Leaf rust</Keyword>
<Keyword MajorTopicYN="N">Puccinia triticina</Keyword>
<Keyword MajorTopicYN="N">Stem-loop qRT-PCR</Keyword>
<Keyword MajorTopicYN="N">TAS</Keyword>
<Keyword MajorTopicYN="N">Ta-siRNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28710588</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-017-2744-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-017-2744-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):e103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2015 Nov 20;42(11):625-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26674380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Feb;13(2):163-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25047236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Aug;16(4):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2017 May;17 (2-3):145-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27665284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 23;8(7):e69801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 1;18(19):2368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2016 May;7(3):356-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26924473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 12;10(6):e0127468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26070200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 10;11(3):e0150933</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26963812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14 (1):117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25816689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Apr 17;13:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Dec 1;25(23):2540-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jul 22;15:618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25051884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2013 Dec 11;12(4):6565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 1;25(1):130-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Sep;102(3):331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jun;162(2):741-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Aug;19(8):1429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Jan;22(1):11-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27666517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 06;7:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27579028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 1;27(7):919-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1031-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):721-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22508932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:109-137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28125280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Apr 17;11:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:137-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23330790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:303451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Sep 17;4:369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Mar;173(3):1594-1605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Sep;79(6):928-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24944042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2017 May;17 (2-3):171-187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27032785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jan;69(2):217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:225-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Oct;39(10):9373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22736109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Mar;29(3):165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 15;28(20):2561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2017 Jan;130(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27900550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2014;2014:570176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25180085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):1045-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 1;28(15):2059-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2017 Mar;130(2):211-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28197782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4584-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2017 May;17 (2-3):121-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28220336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Dec 11;10(12):e1004826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25503246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2017 Jan;93(1-2):35-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27681945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):6241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Feb;37(3):916-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19103661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Jan;243(1):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Aug;17(8):997-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jun;188(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Jan;245(1):161-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 15;4(6):e5908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19526060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3318-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
</noRegion>
<name sortKey="Jha, Shailendra" sort="Jha, Shailendra" uniqKey="Jha S" first="Shailendra" last="Jha">Shailendra Jha</name>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28710588
   |texte=   Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28710588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020