Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

Identifieur interne : 000063 ( Main/Curation ); précédent : 000062; suivant : 000064

Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

Auteurs : William B. Rutter [États-Unis] ; Andres Salcedo [États-Unis] ; Alina Akhunova [États-Unis] ; Fei He [États-Unis] ; Shichen Wang [États-Unis] ; Hanquan Liang [États-Unis, République populaire de Chine] ; Robert L. Bowden [États-Unis] ; Eduard Akhunov [États-Unis]

Source :

RBID : pubmed:28403814

Descripteurs français

English descriptors

Abstract

BACKGROUND

Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt).

RESULTS

The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors.

CONCLUSIONS

Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.


DOI: 10.1186/s12864-017-3678-6
PubMed: 28403814
PubMed Central: PMC5389088

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28403814

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.</title>
<author>
<name sortKey="Rutter, William B" sort="Rutter, William B" uniqKey="Rutter W" first="William B" last="Rutter">William B. Rutter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Salcedo, Andres" sort="Salcedo, Andres" uniqKey="Salcedo A" first="Andres" last="Salcedo">Andres Salcedo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Akhunova, Alina" sort="Akhunova, Alina" uniqKey="Akhunova A" first="Alina" last="Akhunova">Alina Akhunova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="He, Fei" sort="He, Fei" uniqKey="He F" first="Fei" last="He">Fei He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shichen" sort="Wang, Shichen" uniqKey="Wang S" first="Shichen" last="Wang">Shichen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, 101 Gateway, Suite A, College Station, TX, 77845, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, 101 Gateway, Suite A, College Station, TX, 77845</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liang, Hanquan" sort="Liang, Hanquan" uniqKey="Liang H" first="Hanquan" last="Liang">Hanquan Liang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bowden, Robert L" sort="Bowden, Robert L" uniqKey="Bowden R" first="Robert L" last="Bowden">Robert L. Bowden</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA ARS, Hard Winter Wheat Genetics Research Unit, Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA ARS, Hard Winter Wheat Genetics Research Unit, Throckmorton Plant Sciences Center, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Akhunov, Eduard" sort="Akhunov, Eduard" uniqKey="Akhunov E" first="Eduard" last="Akhunov">Eduard Akhunov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. eakhunov@ksu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28403814</idno>
<idno type="pmid">28403814</idno>
<idno type="doi">10.1186/s12864-017-3678-6</idno>
<idno type="pmc">PMC5389088</idno>
<idno type="wicri:Area/Main/Corpus">000063</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000063</idno>
<idno type="wicri:Area/Main/Curation">000063</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000063</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.</title>
<author>
<name sortKey="Rutter, William B" sort="Rutter, William B" uniqKey="Rutter W" first="William B" last="Rutter">William B. Rutter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Salcedo, Andres" sort="Salcedo, Andres" uniqKey="Salcedo A" first="Andres" last="Salcedo">Andres Salcedo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Akhunova, Alina" sort="Akhunova, Alina" uniqKey="Akhunova A" first="Alina" last="Akhunova">Alina Akhunova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="He, Fei" sort="He, Fei" uniqKey="He F" first="Fei" last="He">Fei He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shichen" sort="Wang, Shichen" uniqKey="Wang S" first="Shichen" last="Wang">Shichen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, 101 Gateway, Suite A, College Station, TX, 77845, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, 101 Gateway, Suite A, College Station, TX, 77845</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liang, Hanquan" sort="Liang, Hanquan" uniqKey="Liang H" first="Hanquan" last="Liang">Hanquan Liang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bowden, Robert L" sort="Bowden, Robert L" uniqKey="Bowden R" first="Robert L" last="Bowden">Robert L. Bowden</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA ARS, Hard Winter Wheat Genetics Research Unit, Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA ARS, Hard Winter Wheat Genetics Research Unit, Throckmorton Plant Sciences Center, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Akhunov, Eduard" sort="Akhunov, Eduard" uniqKey="Akhunov E" first="Eduard" last="Akhunov">Eduard Akhunov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. eakhunov@ksu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (isolation & purification)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (microbiology)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Sequence Analysis, RNA (methods)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Analyse de séquence d'ARN (méthodes)</term>
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (isolement et purification)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (microbiologie)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
<term>Tiges de plante</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Analysis, RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Tiges de plante</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Analyse de séquence d'ARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Fungal</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Interactions hôte-pathogène</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28403814</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.</ArticleTitle>
<Pagination>
<MedlinePgn>291</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-017-3678-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rutter</LastName>
<ForeName>William B</ForeName>
<Initials>WB</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salcedo</LastName>
<ForeName>Andres</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akhunova</LastName>
<ForeName>Alina</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shichen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, 101 Gateway, Suite A, College Station, TX, 77845, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Hanquan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowden</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>USDA ARS, Hard Winter Wheat Genetics Research Unit, Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akhunov</LastName>
<ForeName>Eduard</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0416-5211</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. eakhunov@ksu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Comparative genomics</Keyword>
<Keyword MajorTopicYN="Y">Gene co-expression network</Keyword>
<Keyword MajorTopicYN="Y">Stem rust</Keyword>
<Keyword MajorTopicYN="Y">Wheat resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28403814</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-017-3678-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-017-3678-6</ArticleId>
<ArticleId IdType="pmc">PMC5389088</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Oct 09;7(10):2896-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26454013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 01;5:372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 29;333(6042):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 3;17 (1):860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27809762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Dec;101(12):1418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Mar 02;16:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25853180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 15;5:450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1573-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2015;10(4):e991574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Jul;106(7):729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27019064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 26;8(11):e81606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24303057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):900-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Sep;47(9):796-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Mar 24;12:161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Jan;14(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Mar;21(6):754-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15479708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D935-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22075996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 02;10(3):e0118731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25730421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:303-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 1;31(21):3544-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26142184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2012 Apr;10(2):94-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jun;65(9):2295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycology. 2011 Oct 3;2(3):118-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Jun;28(6):689-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25650830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2010 Aug;17(4):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):922-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 03;10(4):e1004030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):2324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26417008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 27;7:600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Oct;28(10):1142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26075826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1072-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Feb 25;16:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2007;2007:17542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):872-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26120730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):222-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2007 Aug 06;1:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22282535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2005 Oct;12(8):1047-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16241897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jan;60(1):107-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Jan;107(1):75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27503371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2010 May 20;37(6):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Oct;27(10):2991-3012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 13;6:228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25918514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Nov;264(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28403814
   |texte=   Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:28403814" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020