Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.

Identifieur interne : 000118 ( Main/Corpus ); précédent : 000117; suivant : 000119

Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.

Auteurs : Letizia Bernardo ; Bhakti Prinsi ; Alfredo Simone Negri ; Luigi Cattivelli ; Luca Espen ; Giampiero Valè

Source :

RBID : pubmed:23167439

English descriptors

Abstract

BACKGROUND

Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach.

RESULTS

Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins.

CONCLUSIONS

The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool.


DOI: 10.1186/1471-2164-13-642
PubMed: 23167439
PubMed Central: PMC3541957

Links to Exploration step

pubmed:23167439

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.</title>
<author>
<name sortKey="Bernardo, Letizia" sort="Bernardo, Letizia" uniqKey="Bernardo L" first="Letizia" last="Bernardo">Letizia Bernardo</name>
<affiliation>
<nlm:affiliation>CRA-Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda, PC I-29017, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prinsi, Bhakti" sort="Prinsi, Bhakti" uniqKey="Prinsi B" first="Bhakti" last="Prinsi">Bhakti Prinsi</name>
</author>
<author>
<name sortKey="Negri, Alfredo Simone" sort="Negri, Alfredo Simone" uniqKey="Negri A" first="Alfredo Simone" last="Negri">Alfredo Simone Negri</name>
</author>
<author>
<name sortKey="Cattivelli, Luigi" sort="Cattivelli, Luigi" uniqKey="Cattivelli L" first="Luigi" last="Cattivelli">Luigi Cattivelli</name>
</author>
<author>
<name sortKey="Espen, Luca" sort="Espen, Luca" uniqKey="Espen L" first="Luca" last="Espen">Luca Espen</name>
</author>
<author>
<name sortKey="Vale, Giampiero" sort="Vale, Giampiero" uniqKey="Vale G" first="Giampiero" last="Valè">Giampiero Valè</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23167439</idno>
<idno type="pmid">23167439</idno>
<idno type="doi">10.1186/1471-2164-13-642</idno>
<idno type="pmc">PMC3541957</idno>
<idno type="wicri:Area/Main/Corpus">000118</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000118</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.</title>
<author>
<name sortKey="Bernardo, Letizia" sort="Bernardo, Letizia" uniqKey="Bernardo L" first="Letizia" last="Bernardo">Letizia Bernardo</name>
<affiliation>
<nlm:affiliation>CRA-Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda, PC I-29017, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prinsi, Bhakti" sort="Prinsi, Bhakti" uniqKey="Prinsi B" first="Bhakti" last="Prinsi">Bhakti Prinsi</name>
</author>
<author>
<name sortKey="Negri, Alfredo Simone" sort="Negri, Alfredo Simone" uniqKey="Negri A" first="Alfredo Simone" last="Negri">Alfredo Simone Negri</name>
</author>
<author>
<name sortKey="Cattivelli, Luigi" sort="Cattivelli, Luigi" uniqKey="Cattivelli L" first="Luigi" last="Cattivelli">Luigi Cattivelli</name>
</author>
<author>
<name sortKey="Espen, Luca" sort="Espen, Luca" uniqKey="Espen L" first="Luca" last="Espen">Luca Espen</name>
</author>
<author>
<name sortKey="Vale, Giampiero" sort="Vale, Giampiero" uniqKey="Vale G" first="Giampiero" last="Valè">Giampiero Valè</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (immunology)</term>
<term>Blotting, Western (MeSH)</term>
<term>Chromatography, Liquid (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Electrophoresis, Gel, Two-Dimensional (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (immunology)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Proteome (MeSH)</term>
<term>Proteomics (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Basidiomycota</term>
<term>Hordeum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
<term>Chromatography, Liquid</term>
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Gene Expression Profiling</term>
<term>Proteomics</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23167439</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.</ArticleTitle>
<Pagination>
<MedlinePgn>642</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-642</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bernardo</LastName>
<ForeName>Letizia</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>CRA-Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda, PC I-29017, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prinsi</LastName>
<ForeName>Bhakti</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Negri</LastName>
<ForeName>Alfredo Simone</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cattivelli</LastName>
<ForeName>Luigi</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Espen</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Valè</LastName>
<ForeName>Giampiero</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015180" MajorTopicYN="N">Electrophoresis, Gel, Two-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23167439</ArticleId>
<ArticleId IdType="pii">1471-2164-13-642</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-642</ArticleId>
<ArticleId IdType="pmc">PMC3541957</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010;5(1):e8950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20126632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):480-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Feb;108(4):712-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1597-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1597-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16504059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Dec;20(12):1604-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17990968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Nov;6(22):6053-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Oct;3(10):885-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11(1):91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Aug;6(16):4599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16858732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:449-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Nov;119(7):1281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19711052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Apr;5(6):1624-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 Apr;1(4):304-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jun;9(6):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Mar;8(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(15):4287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jul;69(10):1989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18534637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 Feb;1(2):139-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Jul;7(14):2447-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17623303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Mar;6(6):1897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16479535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Dec;55(408):2607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jan;36(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jan;18(1):52-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 Aug 6;9(8):3954-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 May;52(358):881-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1988 Jan;9(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2466645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):463-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Oct;6(20):5385-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16991193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2007 Nov;50(11):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18059546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2002 Oct;23(5):647-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):2147-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Jan;11(2):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21204249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jun;29(6):1061-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):1720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2004 Oct;3(10):960-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13080-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):338-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1989;27:143-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Mar;7(5):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17340588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jun 26;40(25):7542-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11412108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18464895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1988 Jun;9(6):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2466658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):2053-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20172964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Nov;264(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000118 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000118 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23167439
   |texte=   Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23167439" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020