Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.

Identifieur interne : 000066 ( Main/Corpus ); précédent : 000065; suivant : 000067

The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.

Auteurs : Lan Jing ; Dandan Guo ; Wenjie Hu ; Xiaofan Niu

Source :

RBID : pubmed:28284182

English descriptors

Abstract

BACKGROUND

Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome.

RESULTS

908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen.

CONCLUSIONS

This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.


DOI: 10.1186/s12859-017-1577-0
PubMed: 28284182
PubMed Central: PMC5346188

Links to Exploration step

pubmed:28284182

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.</title>
<author>
<name sortKey="Jing, Lan" sort="Jing, Lan" uniqKey="Jing L" first="Lan" last="Jing">Lan Jing</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Dandan" sort="Guo, Dandan" uniqKey="Guo D" first="Dandan" last="Guo">Dandan Guo</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Wenjie" sort="Hu, Wenjie" uniqKey="Hu W" first="Wenjie" last="Hu">Wenjie Hu</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niu, Xiaofan" sort="Niu, Xiaofan" uniqKey="Niu X" first="Xiaofan" last="Niu">Xiaofan Niu</name>
<affiliation>
<nlm:affiliation>Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28284182</idno>
<idno type="pmid">28284182</idno>
<idno type="doi">10.1186/s12859-017-1577-0</idno>
<idno type="pmc">PMC5346188</idno>
<idno type="wicri:Area/Main/Corpus">000066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.</title>
<author>
<name sortKey="Jing, Lan" sort="Jing, Lan" uniqKey="Jing L" first="Lan" last="Jing">Lan Jing</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Dandan" sort="Guo, Dandan" uniqKey="Guo D" first="Dandan" last="Guo">Dandan Guo</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Wenjie" sort="Hu, Wenjie" uniqKey="Hu W" first="Wenjie" last="Hu">Wenjie Hu</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niu, Xiaofan" sort="Niu, Xiaofan" uniqKey="Niu X" first="Xiaofan" last="Niu">Xiaofan Niu</name>
<affiliation>
<nlm:affiliation>Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Aspartic Acid Endopeptidases (metabolism)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Basidiomycota (metabolism)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Helianthus (microbiology)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Protein Sorting Signals (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aspartic Acid Endopeptidases</term>
<term>Bacterial Proteins</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Helianthus</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Gene Expression Profiling</term>
<term>Open Reading Frames</term>
<term>Protein Sorting Signals</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28284182</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Mar</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>166</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12859-017-1577-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Lan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China. jinglan71@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Dandan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Wenjie</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niu</LastName>
<ForeName>Xiaofan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.23.-</RegistryNumber>
<NameOfSubstance UI="D016282">Aspartic Acid Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.23.36</RegistryNumber>
<NameOfSubstance UI="C095652">signal peptidase II</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016282" MajorTopicYN="N">Aspartic Acid Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006368" MajorTopicYN="N">Helianthus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioinformatics</Keyword>
<Keyword MajorTopicYN="N">Prediction algorithm</Keyword>
<Keyword MajorTopicYN="N">Puccinia helianthi Schw.</Keyword>
<Keyword MajorTopicYN="N">Secretory protein</Keyword>
<Keyword MajorTopicYN="N">Signal peptide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28284182</ArticleId>
<ArticleId IdType="doi">10.1186/s12859-017-1577-0</ArticleId>
<ArticleId IdType="pii">10.1186/s12859-017-1577-0</ArticleId>
<ArticleId IdType="pmc">PMC5346188</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Dec;13(15):1477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9434352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 May;15(5):437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Sep;14 (9):2107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 May;27(5):219-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12076526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Apr;143 ( Pt 4):1327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9141696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Nov 6;258(5084):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1990 Aug;2(4):604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2252586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Sep 4;273(36):23134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9722542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Jun 04;8:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2000 Feb;3(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 May;29(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Apr 3;93(1):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Aug 1;12(15):2318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9694797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8770-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jan;254(2):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16445746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wei Sheng Wu Xue Bao. 2005 Aug;45(4):561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Sep;17(9):847-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jul 08;11:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1997 Jan;10(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9051728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2011 Jul;33(7):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22049694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Apr;181(8):2448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2002 Oct;292(5-6):405-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12452286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Mar 10;140(1-2):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Mar 15;16(6):707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11914276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2003 Aug;12(8):1652-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Feb;11(2):61-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13 Suppl 7:S8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23281827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 15;274(3):1698-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Sep;14(9):2095-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Sep;1778(9):1735-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17935691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 15;278(33):31105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12759345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 23;10:626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2006 Feb;28(2):200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Nov;12(11):2019-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Nov;5(11):1575-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8312740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6963-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11391010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 May;20(7):595-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12734798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28284182
   |texte=   The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28284182" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020