Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.

Identifieur interne : 000014 ( Main/Corpus ); précédent : 000013; suivant : 000015

Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.

Auteurs : Yuxiang Li ; Chongjing Xia ; Meinan Wang ; Chuntao Yin ; Xianming Chen

Source :

RBID : pubmed:32197579

Abstract

BACKGROUND

The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes.

RESULTS

The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors.

CONCLUSIONS

Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.


DOI: 10.1186/s12864-020-6677-y
PubMed: 32197579
PubMed Central: PMC7085141

Links to Exploration step

pubmed:32197579

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.</title>
<author>
<name sortKey="Li, Yuxiang" sort="Li, Yuxiang" uniqKey="Li Y" first="Yuxiang" last="Li">Yuxiang Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Chongjing" sort="Xia, Chongjing" uniqKey="Xia C" first="Chongjing" last="Xia">Chongjing Xia</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Meinan" sort="Wang, Meinan" uniqKey="Wang M" first="Meinan" last="Wang">Meinan Wang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Chuntao" sort="Yin, Chuntao" uniqKey="Yin C" first="Chuntao" last="Yin">Chuntao Yin</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32197579</idno>
<idno type="pmid">32197579</idno>
<idno type="doi">10.1186/s12864-020-6677-y</idno>
<idno type="pmc">PMC7085141</idno>
<idno type="wicri:Area/Main/Corpus">000014</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000014</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.</title>
<author>
<name sortKey="Li, Yuxiang" sort="Li, Yuxiang" uniqKey="Li Y" first="Yuxiang" last="Li">Yuxiang Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Chongjing" sort="Xia, Chongjing" uniqKey="Xia C" first="Chongjing" last="Xia">Chongjing Xia</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Meinan" sort="Wang, Meinan" uniqKey="Wang M" first="Meinan" last="Wang">Meinan Wang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Chuntao" sort="Yin, Chuntao" uniqKey="Yin C" first="Chuntao" last="Yin">Chuntao Yin</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32197579</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.</ArticleTitle>
<Pagination>
<MedlinePgn>247</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-020-6677-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yuxiang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Chongjing</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Meinan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Chuntao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xianming</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9013-5974</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA. xianming@wsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2090-22000-018-00D</GrantID>
<Agency>Agricultural Research Service</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>13C-3061-5682; 13C-3061-3144</GrantID>
<Agency>Washington Grain Commission</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Avirulence</Keyword>
<Keyword MajorTopicYN="N">Effector</Keyword>
<Keyword MajorTopicYN="N">Genomics</Keyword>
<Keyword MajorTopicYN="N">Mutation</Keyword>
<Keyword MajorTopicYN="N">Puccinia striiformis</Keyword>
<Keyword MajorTopicYN="N">Stripe rust</Keyword>
<Keyword MajorTopicYN="N">Wheat</Keyword>
<Keyword MajorTopicYN="N">Yellow rust</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32197579</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-020-6677-y</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-020-6677-y</ArticleId>
<ArticleId IdType="pmc">PMC7085141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Evol Biol. 2012;2012:860797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Jun;185(2):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 22;17:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29905871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17594-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27215970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Jan;23(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15580263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2017 Aug;101(8):1522-1532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30678601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 1;27(7):1017-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21330290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2402-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jun 7;14(6):e1006992</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29879221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Apr;106(4):362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26667189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 11;8:2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Sep;109(9):1509-1512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31044663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2016 May;100(5):966-975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30686156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1659:73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Nov 20;14:807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24252298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2014 Nov;98(11):1534-1542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30699782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1607-1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jun;164(2):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Apr;52(4):716-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Jan;108(1):133-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28876207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 25;7(1):1141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1573-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 17;7:42419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28211474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Apr;37(4):420-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Nov;156(3):1169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11063692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2019 Jan 28;35(2):28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30689125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Feb 20;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29463659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25689669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Jun;34(6):652-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Apr-Jun;6(2):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Nov;31(11):1117-1120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29792772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Sep 15;28(18):2397-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:349-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 May 20;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2012 Jan;96(1):131-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30731861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Oct;23(10):1749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):361-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27913634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Feb;71(4):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Mar;13(3):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 16;7:44598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28300209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan;225(2):880-895</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31529497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e4761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19283079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Nov;104(11):1208-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24779354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Feb 09;17:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26861502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1561-1572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30623449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2016 May;120(5):729-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27109369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 11;26(4):1382-1397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24728647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jun 21;3(6):959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 May 04;15:336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24886033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Aug 06;16:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 11;9:1294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30254653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Mar;107(3):329-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27775498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Feb 06;5(4):559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25660167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000014 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000014 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32197579
   |texte=   Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32197579" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020