Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina.

Identifieur interne : 000009 ( Main/Corpus ); précédent : 000008; suivant : 000010

Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina.

Auteurs : Shuqing Zhao ; Xiaofeng Shang ; Weishuai Bi ; Xiumei Yu ; Daqun Liu ; Zhensheng Kang ; Xiaojie Wang ; Xiaodong Wang

Source :

RBID : pubmed:32582112

Abstract

Rust fungi secrete various specialized effectors into host cells to manipulate the plant defense response. Conserved motifs, including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, EAR, [SG]-P-C-[KR]-P, DPBB_1 (PNPi), and ToxA, have been identified in various oomycete and fungal effectors and are reported to be crucial for effector translocation or function. However, little is known about potential effectors containing any of these conserved motifs in the wheat leaf rust fungus (Puccinia triticina, Pt). In this study, sequencing was performed on RNA samples collected from the germ tubes (GT) of uredospores of an epidemic Pt pathotype PHTT(P) and Pt-infected leaves of a susceptible wheat cultivar "Chinese Spring" at 4, 6, and 8 days post-inoculation (dpi). The assembled transcriptome data were compared to the reference genome of "Pt 1-1 BBBD Race 1." A total of 17,976 genes, including 2,284 "novel" transcripts, were annotated. Among all these genes, we identified 3,149 upregulated genes upon Pt infection at all time points compared to GT, whereas 1,613 genes were more highly expressed in GT. A total of 464 secreted proteins were encoded by those upregulated genes, with 79 of them also predicted as possible effectors by EffectorP. Using hmmsearch and Regex, we identified 719 RXLR-like, 19 PNPi-like, 19 CRN-like, 138 Y/F/WxC, and 9 CFEM effector candidates from the deduced protein database including data based on the "Pt 1-1 BBBD Race 1" genome and the transcriptome data collected here. Four of the PNPi-like effector candidates with DPBB_1 conserved domain showed physical interactions with wheat NPR1 protein in yeast two-hybrid assay. Nine Y/F/WxC and seven CFEM effector candidates were transiently expressed in Nicotiana benthamiana. None of these effector candidates showed induction or suppression of cell death triggered by BAX protein, but the expression of one CFEM effector candidate, PTTG_08198, accelerated the progress of cell death and promoted the accumulation of reactive oxygen species (ROS). In conclusion, we profiled genes associated with the infection process of the Pt pathotype PHTT(P). The identified effector candidates with conserved motifs will help guide the investigation of virulent mechanisms of leaf rust fungus.

DOI: 10.3389/fmicb.2020.01188
PubMed: 32582112
PubMed Central: PMC7283542

Links to Exploration step

pubmed:32582112

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus
<i>Puccinia triticina</i>
.</title>
<author>
<name sortKey="Zhao, Shuqing" sort="Zhao, Shuqing" uniqKey="Zhao S" first="Shuqing" last="Zhao">Shuqing Zhao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Xiaofeng" sort="Shang, Xiaofeng" uniqKey="Shang X" first="Xiaofeng" last="Shang">Xiaofeng Shang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bi, Weishuai" sort="Bi, Weishuai" uniqKey="Bi W" first="Weishuai" last="Bi">Weishuai Bi</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiumei" sort="Yu, Xiumei" uniqKey="Yu X" first="Xiumei" last="Yu">Xiumei Yu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Daqun" sort="Liu, Daqun" uniqKey="Liu D" first="Daqun" last="Liu">Daqun Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaojie" sort="Wang, Xiaojie" uniqKey="Wang X" first="Xiaojie" last="Wang">Xiaojie Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32582112</idno>
<idno type="pmid">32582112</idno>
<idno type="doi">10.3389/fmicb.2020.01188</idno>
<idno type="pmc">PMC7283542</idno>
<idno type="wicri:Area/Main/Corpus">000009</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000009</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus
<i>Puccinia triticina</i>
.</title>
<author>
<name sortKey="Zhao, Shuqing" sort="Zhao, Shuqing" uniqKey="Zhao S" first="Shuqing" last="Zhao">Shuqing Zhao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Xiaofeng" sort="Shang, Xiaofeng" uniqKey="Shang X" first="Xiaofeng" last="Shang">Xiaofeng Shang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bi, Weishuai" sort="Bi, Weishuai" uniqKey="Bi W" first="Weishuai" last="Bi">Weishuai Bi</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xiumei" sort="Yu, Xiumei" uniqKey="Yu X" first="Xiumei" last="Yu">Xiumei Yu</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Daqun" sort="Liu, Daqun" uniqKey="Liu D" first="Daqun" last="Liu">Daqun Liu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Zhensheng" sort="Kang, Zhensheng" uniqKey="Kang Z" first="Zhensheng" last="Kang">Zhensheng Kang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaojie" sort="Wang, Xiaojie" uniqKey="Wang X" first="Xiaojie" last="Wang">Xiaojie Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaodong" sort="Wang, Xiaodong" uniqKey="Wang X" first="Xiaodong" last="Wang">Xiaodong Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rust fungi secrete various specialized effectors into host cells to manipulate the plant defense response. Conserved motifs, including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, EAR, [SG]-P-C-[KR]-P, DPBB_1 (PNPi), and ToxA, have been identified in various oomycete and fungal effectors and are reported to be crucial for effector translocation or function. However, little is known about potential effectors containing any of these conserved motifs in the wheat leaf rust fungus (
<i>Puccinia triticina</i>
,
<i>Pt</i>
). In this study, sequencing was performed on RNA samples collected from the germ tubes (GT) of uredospores of an epidemic
<i>Pt</i>
pathotype PHTT(P) and
<i>Pt</i>
-infected leaves of a susceptible wheat cultivar "Chinese Spring" at 4, 6, and 8 days post-inoculation (dpi). The assembled transcriptome data were compared to the reference genome of "
<i>Pt</i>
1-1 BBBD Race 1." A total of 17,976 genes, including 2,284 "novel" transcripts, were annotated. Among all these genes, we identified 3,149 upregulated genes upon
<i>Pt</i>
infection at all time points compared to GT, whereas 1,613 genes were more highly expressed in GT. A total of 464 secreted proteins were encoded by those upregulated genes, with 79 of them also predicted as possible effectors by EffectorP. Using hmmsearch and Regex, we identified 719 RXLR-like, 19 PNPi-like, 19 CRN-like, 138 Y/F/WxC, and 9 CFEM effector candidates from the deduced protein database including data based on the "
<i>Pt</i>
1-1 BBBD Race 1" genome and the transcriptome data collected here. Four of the PNPi-like effector candidates with DPBB_1 conserved domain showed physical interactions with wheat NPR1 protein in yeast two-hybrid assay. Nine Y/F/WxC and seven CFEM effector candidates were transiently expressed in
<i>Nicotiana benthamiana</i>
. None of these effector candidates showed induction or suppression of cell death triggered by BAX protein, but the expression of one CFEM effector candidate, PTTG_08198, accelerated the progress of cell death and promoted the accumulation of reactive oxygen species (ROS). In conclusion, we profiled genes associated with the infection process of the
<i>Pt</i>
pathotype PHTT(P). The identified effector candidates with conserved motifs will help guide the investigation of virulent mechanisms of leaf rust fungus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32582112</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus
<i>Puccinia triticina</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1188</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01188</ELocationID>
<Abstract>
<AbstractText>Rust fungi secrete various specialized effectors into host cells to manipulate the plant defense response. Conserved motifs, including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, EAR, [SG]-P-C-[KR]-P, DPBB_1 (PNPi), and ToxA, have been identified in various oomycete and fungal effectors and are reported to be crucial for effector translocation or function. However, little is known about potential effectors containing any of these conserved motifs in the wheat leaf rust fungus (
<i>Puccinia triticina</i>
,
<i>Pt</i>
). In this study, sequencing was performed on RNA samples collected from the germ tubes (GT) of uredospores of an epidemic
<i>Pt</i>
pathotype PHTT(P) and
<i>Pt</i>
-infected leaves of a susceptible wheat cultivar "Chinese Spring" at 4, 6, and 8 days post-inoculation (dpi). The assembled transcriptome data were compared to the reference genome of "
<i>Pt</i>
1-1 BBBD Race 1." A total of 17,976 genes, including 2,284 "novel" transcripts, were annotated. Among all these genes, we identified 3,149 upregulated genes upon
<i>Pt</i>
infection at all time points compared to GT, whereas 1,613 genes were more highly expressed in GT. A total of 464 secreted proteins were encoded by those upregulated genes, with 79 of them also predicted as possible effectors by EffectorP. Using hmmsearch and Regex, we identified 719 RXLR-like, 19 PNPi-like, 19 CRN-like, 138 Y/F/WxC, and 9 CFEM effector candidates from the deduced protein database including data based on the "
<i>Pt</i>
1-1 BBBD Race 1" genome and the transcriptome data collected here. Four of the PNPi-like effector candidates with DPBB_1 conserved domain showed physical interactions with wheat NPR1 protein in yeast two-hybrid assay. Nine Y/F/WxC and seven CFEM effector candidates were transiently expressed in
<i>Nicotiana benthamiana</i>
. None of these effector candidates showed induction or suppression of cell death triggered by BAX protein, but the expression of one CFEM effector candidate, PTTG_08198, accelerated the progress of cell death and promoted the accumulation of reactive oxygen species (ROS). In conclusion, we profiled genes associated with the infection process of the
<i>Pt</i>
pathotype PHTT(P). The identified effector candidates with conserved motifs will help guide the investigation of virulent mechanisms of leaf rust fungus.</AbstractText>
<CopyrightInformation>Copyright © 2020 Zhao, Shang, Bi, Yu, Liu, Kang, Wang and Wang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Shuqing</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Xiaofeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bi</LastName>
<ForeName>Weishuai</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xiumei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Daqun</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Zhensheng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiaojie</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiaodong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CFEM</Keyword>
<Keyword MajorTopicYN="N">CRN</Keyword>
<Keyword MajorTopicYN="N">RXLR</Keyword>
<Keyword MajorTopicYN="N">Y/F/WxC</Keyword>
<Keyword MajorTopicYN="N">conserved motif</Keyword>
<Keyword MajorTopicYN="N">fungal effectors</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
<Keyword MajorTopicYN="N">wheat leaf rust</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32582112</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01188</ArticleId>
<ArticleId IdType="pmc">PMC7283542</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2013 Jun;56(6):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23957671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):3190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Mar;33(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jun;23(6):469-472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29753632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 24;7:205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 20;11(6):e0157586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27322386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2019 Dec 2;12(12):1624-1638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31606466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Nov 15;27(22):3209-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Dec 5;10(1):5571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31804478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Sep 04;9:2068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30233541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 6;11(10):e0163379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27711117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Mar;280(5):1226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23289754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Sep 11;8(9):2702-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27521814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Nov 20;14:807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24252298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 10;11(2):e0149035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26863009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2018 Dec;46:19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29454191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000 Sep;38:491-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22076138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2016 Aug;100(8):1768-1773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30686220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2020 Feb;104(2):455-464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31804899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;313:107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16118429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Sep 20;8:1807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28979251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):770-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24558651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Aug 10;5:13032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26255557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1190-1206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30554421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 May 20;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Aug 17;361(6403):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30115783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jun;29(6):1184-1195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jun 2;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jun 14;9(1):2347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29904064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10393929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Dec 29;11(12):e1005348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26714171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Dec;29(12):977-989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27898286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;343:43-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16988332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2019;14(2):1557008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30621489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 02;8:1330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 20;329(5994):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 11;9:1294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30254653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 Jan;21(1):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31774224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Dec 13;22(6):777-788.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29174403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32582112
   |texte=   Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32582112" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020