Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.

Identifieur interne : 001A62 ( Main/Corpus ); précédent : 001A61; suivant : 001A63

The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.

Auteurs : A. Schmidt ; T. Beck ; A. Koller ; J. Kunz ; M N Hall

Source :

RBID : pubmed:9843498

English descriptors

Abstract

The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.

DOI: 10.1093/emboj/17.23.6924
PubMed: 9843498
PubMed Central: PMC1171040

Links to Exploration step

pubmed:9843498

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.</title>
<author>
<name sortKey="Schmidt, A" sort="Schmidt, A" uniqKey="Schmidt A" first="A" last="Schmidt">A. Schmidt</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beck, T" sort="Beck, T" uniqKey="Beck T" first="T" last="Beck">T. Beck</name>
</author>
<author>
<name sortKey="Koller, A" sort="Koller, A" uniqKey="Koller A" first="A" last="Koller">A. Koller</name>
</author>
<author>
<name sortKey="Kunz, J" sort="Kunz, J" uniqKey="Kunz J" first="J" last="Kunz">J. Kunz</name>
</author>
<author>
<name sortKey="Hall, M N" sort="Hall, M N" uniqKey="Hall M" first="M N" last="Hall">M N Hall</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9843498</idno>
<idno type="pmid">9843498</idno>
<idno type="doi">10.1093/emboj/17.23.6924</idno>
<idno type="pmc">PMC1171040</idno>
<idno type="wicri:Area/Main/Corpus">001A62</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.</title>
<author>
<name sortKey="Schmidt, A" sort="Schmidt, A" uniqKey="Schmidt A" first="A" last="Schmidt">A. Schmidt</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beck, T" sort="Beck, T" uniqKey="Beck T" first="T" last="Beck">T. Beck</name>
</author>
<author>
<name sortKey="Koller, A" sort="Koller, A" uniqKey="Koller A" first="A" last="Koller">A. Koller</name>
</author>
<author>
<name sortKey="Kunz, J" sort="Kunz, J" uniqKey="Kunz J" first="J" last="Kunz">J. Kunz</name>
</author>
<author>
<name sortKey="Hall, M N" sort="Hall, M N" uniqKey="Hall M" first="M N" last="Hall">M N Hall</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (MeSH)</term>
<term>Amino Acid Transport Systems (MeSH)</term>
<term>Cell Cycle Proteins (MeSH)</term>
<term>Escherichia coli Proteins (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein Kinases (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Membrane Transport Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Amino Acid Transport Systems</term>
<term>Cell Cycle Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9843498</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>23</Issue>
<PubDate>
<Year>1998</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.</ArticleTitle>
<Pagination>
<MedlinePgn>6924-31</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beck</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koller</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kunz</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>M N</ForeName>
<Initials>MN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100984">TAP42 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C429825">TAT2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147682-31-3</RegistryNumber>
<NameOfSubstance UI="C066958">NPR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>55126-97-1</RegistryNumber>
<NameOfSubstance UI="C035131">TnaB protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="Y">Amino Acid Transport Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="Y">Escherichia coli Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="Y">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="Y">Protein Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>12</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/17.23.6924</ArticleId>
<ArticleId IdType="pmc">PMC1171040</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Jun 1;133(1):135-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Jun 1;133(1):141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1987 May 4;164(3):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3552673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;57(2-3):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3319781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Jul;222(2-3):393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2125693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):5010-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Apr 8;141(1):133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Oct;14(10):6597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7798155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1995 Jan;16(1):53-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jan 26;84(2):277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8565073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Oct;18(1):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Feb 1;15(3):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8599949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8633019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 15;17(8):2235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Jun;9(6):1253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jun 29;247(3):827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 13;394(6694):616-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9716124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Nov;144(3):957-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Dec 6;271(49):31166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8940115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Feb 21;88(4):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9038344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jun 23;410(1):78-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9247127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1997 Dec;11(14):1215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Jan;18(1):314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9418878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:9843498
   |texte=   The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:9843498" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020