Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].

Identifieur interne : 001987 ( Main/Corpus ); précédent : 001986; suivant : 001988

RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].

Auteurs : Takayuki Sekito ; Zhengchang Liu ; Janet Thornton ; Ronald A. Butow

Source :

RBID : pubmed:11907262

English descriptors

Abstract

An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1 is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1 Delta cells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate. We show further that Mks1p is a phosphoprotein whose phosphorylation pattern parallels that of Rtg3p in response to activation of the RTG pathway, and that Mks1p is in a complex with Rtg2p. MKS1 was previously implicated in the formation of [URE3], an inactive prion form of a negative regulator of the nitrogen catabolite repression pathway, Ure2p. rtg Delta mutations induce [URE3] and can do so independently of MKS1. We find that glutamate suppresses [URE3] formation, suggesting that the Mks1p effect on the formation of [URE3] can occur indirectly via regulation of the RTG pathway.

DOI: 10.1091/mbc.01-09-0473
PubMed: 11907262
PubMed Central: PMC99599

Links to Exploration step

pubmed:11907262

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].</title>
<author>
<name sortKey="Sekito, Takayuki" sort="Sekito, Takayuki" uniqKey="Sekito T" first="Takayuki" last="Sekito">Takayuki Sekito</name>
<affiliation>
<nlm:affiliation>Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhengchang" sort="Liu, Zhengchang" uniqKey="Liu Z" first="Zhengchang" last="Liu">Zhengchang Liu</name>
</author>
<author>
<name sortKey="Thornton, Janet" sort="Thornton, Janet" uniqKey="Thornton J" first="Janet" last="Thornton">Janet Thornton</name>
</author>
<author>
<name sortKey="Butow, Ronald A" sort="Butow, Ronald A" uniqKey="Butow R" first="Ronald A" last="Butow">Ronald A. Butow</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11907262</idno>
<idno type="pmid">11907262</idno>
<idno type="doi">10.1091/mbc.01-09-0473</idno>
<idno type="pmc">PMC99599</idno>
<idno type="wicri:Area/Main/Corpus">001987</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001987</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].</title>
<author>
<name sortKey="Sekito, Takayuki" sort="Sekito, Takayuki" uniqKey="Sekito T" first="Takayuki" last="Sekito">Takayuki Sekito</name>
<affiliation>
<nlm:affiliation>Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhengchang" sort="Liu, Zhengchang" uniqKey="Liu Z" first="Zhengchang" last="Liu">Zhengchang Liu</name>
</author>
<author>
<name sortKey="Thornton, Janet" sort="Thornton, Janet" uniqKey="Thornton J" first="Janet" last="Thornton">Janet Thornton</name>
</author>
<author>
<name sortKey="Butow, Ronald A" sort="Butow, Ronald A" uniqKey="Butow R" first="Ronald A" last="Butow">Ronald A. Butow</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="ISSN">1059-1524</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (MeSH)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Prions (metabolism)</term>
<term>Repressor Proteins (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (MeSH)</term>
<term>Yeasts (drug effects)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glutamic Acid</term>
<term>Prions</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Mitochondria</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1 is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1 Delta cells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate. We show further that Mks1p is a phosphoprotein whose phosphorylation pattern parallels that of Rtg3p in response to activation of the RTG pathway, and that Mks1p is in a complex with Rtg2p. MKS1 was previously implicated in the formation of [URE3], an inactive prion form of a negative regulator of the nitrogen catabolite repression pathway, Ure2p. rtg Delta mutations induce [URE3] and can do so independently of MKS1. We find that glutamate suppresses [URE3] formation, suggesting that the Mks1p effect on the formation of [URE3] can occur indirectly via regulation of the RTG pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11907262</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>12</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1059-1524</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2002</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].</ArticleTitle>
<Pagination>
<MedlinePgn>795-804</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1 is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1 Delta cells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate. We show further that Mks1p is a phosphoprotein whose phosphorylation pattern parallels that of Rtg3p in response to activation of the RTG pathway, and that Mks1p is in a complex with Rtg2p. MKS1 was previously implicated in the formation of [URE3], an inactive prion form of a negative regulator of the nitrogen catabolite repression pathway, Ure2p. rtg Delta mutations induce [URE3] and can do so independently of MKS1. We find that glutamate suppresses [URE3] formation, suggesting that the Mks1p effect on the formation of [URE3] can occur indirectly via regulation of the RTG pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sekito</LastName>
<ForeName>Takayuki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Zhengchang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thornton</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Butow</LastName>
<ForeName>Ronald A</ForeName>
<Initials>RA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080921">MKS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011328">Prions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C079378">RTG1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011328" MajorTopicYN="N">Prions</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="Y">Repressor Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="Y">Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11907262</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.01-09-0473</ArticleId>
<ArticleId IdType="pmc">PMC99599</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1975;136(4):327-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16095000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1989;5:153-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2557058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jan;11(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1986232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6625-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jun;11(6):2103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2000 Jun;130(2-3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 1;275(48):37347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10980204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Apr 17;20(8):1910-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11296224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):4020-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11054416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1971 May;106(2):519-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5573734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6152012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Jan 30;235(4788):576-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Sep 5;266(25):16534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1885585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7290-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1323828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jan 15;72(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Apr;238(1-2):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8386801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Aug 15;216(1):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Apr 22;264(5158):566-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7909170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1994 Jul;13(1):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Mar;17(3):1110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1997 Apr;29(2):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9239537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 8;272(32):19801-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Nov;13(14):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9392078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Feb 1;18(3):522-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Feb 26;283(5406):1339-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10037606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 14;274(20):14429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jul 9;98(1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10412986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 13;274(33):22968-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Oct;19(10):6720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Oct;153(2):585-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 May;9(5):1897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2473390</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001987 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001987 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:11907262
   |texte=   RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:11907262" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020