Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.

Identifieur interne : 001899 ( Main/Corpus ); précédent : 001898; suivant : 001900

The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.

Auteurs : Fumihiko Omura ; Yukiko Kodama

Source :

RBID : pubmed:14757244

English descriptors

Abstract

The Saccharomyces cerevisiae branched-chain amino acid permease Bap2p plays a major role in leucine, isoleucine, and valine transport, and its synthesis is regulated transcriptionally. Bap2p undergoes a starvation-induced degradation depending upon ubiquitination and the functions of N- and C-terminal domains of Bap2p. Here we show that the N-terminal domain of Bap2p is phosphorylated in response to rapamycin treatment when both the N- and C-termini of Bap2p are fused to glutathione S-transferase. The phosphorylation is dependent on Ser/Thr kinase Npr1p. In npr1 cells, Bap2p becomes slightly more susceptible to the rapamycin-induced degradation, suggesting that Npr1p counteracts the degradation system for Bap2p.

DOI: 10.1016/S0378-1097(03)00918-2
PubMed: 14757244

Links to Exploration step

pubmed:14757244

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.</title>
<author>
<name sortKey="Omura, Fumihiko" sort="Omura, Fumihiko" uniqKey="Omura F" first="Fumihiko" last="Omura">Fumihiko Omura</name>
<affiliation>
<nlm:affiliation>Institute for Beer and RTD Development, Suntory Limited, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan. fumihiko_omura@suntory.co.jp</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kodama, Yukiko" sort="Kodama, Yukiko" uniqKey="Kodama Y" first="Yukiko" last="Kodama">Yukiko Kodama</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:14757244</idno>
<idno type="pmid">14757244</idno>
<idno type="doi">10.1016/S0378-1097(03)00918-2</idno>
<idno type="wicri:Area/Main/Corpus">001899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.</title>
<author>
<name sortKey="Omura, Fumihiko" sort="Omura, Fumihiko" uniqKey="Omura F" first="Fumihiko" last="Omura">Fumihiko Omura</name>
<affiliation>
<nlm:affiliation>Institute for Beer and RTD Development, Suntory Limited, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan. fumihiko_omura@suntory.co.jp</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kodama, Yukiko" sort="Kodama, Yukiko" uniqKey="Kodama Y" first="Yukiko" last="Kodama">Yukiko Kodama</name>
</author>
</analytic>
<series>
<title level="j">FEMS microbiology letters</title>
<idno type="ISSN">0378-1097</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (chemistry)</term>
<term>Amino Acid Transport Systems (genetics)</term>
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Culture Media (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Saccharomyces cerevisiae branched-chain amino acid permease Bap2p plays a major role in leucine, isoleucine, and valine transport, and its synthesis is regulated transcriptionally. Bap2p undergoes a starvation-induced degradation depending upon ubiquitination and the functions of N- and C-terminal domains of Bap2p. Here we show that the N-terminal domain of Bap2p is phosphorylated in response to rapamycin treatment when both the N- and C-termini of Bap2p are fused to glutathione S-transferase. The phosphorylation is dependent on Ser/Thr kinase Npr1p. In npr1 cells, Bap2p becomes slightly more susceptible to the rapamycin-induced degradation, suggesting that Npr1p counteracts the degradation system for Bap2p.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14757244</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>04</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0378-1097</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>230</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jan</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>FEMS microbiology letters</Title>
<ISOAbbreviation>FEMS Microbiol Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.</ArticleTitle>
<Pagination>
<MedlinePgn>227-34</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The Saccharomyces cerevisiae branched-chain amino acid permease Bap2p plays a major role in leucine, isoleucine, and valine transport, and its synthesis is regulated transcriptionally. Bap2p undergoes a starvation-induced degradation depending upon ubiquitination and the functions of N- and C-terminal domains of Bap2p. Here we show that the N-terminal domain of Bap2p is phosphorylated in response to rapamycin treatment when both the N- and C-termini of Bap2p are fused to glutathione S-transferase. The phosphorylation is dependent on Ser/Thr kinase Npr1p. In npr1 cells, Bap2p becomes slightly more susceptible to the rapamycin-induced degradation, suggesting that Npr1p counteracts the degradation system for Bap2p.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Omura</LastName>
<ForeName>Fumihiko</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute for Beer and RTD Development, Suntory Limited, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan. fumihiko_omura@suntory.co.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kodama</LastName>
<ForeName>Yukiko</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEMS Microbiol Lett</MedlineTA>
<NlmUniqueID>7705721</NlmUniqueID>
<ISSNLinking>0378-1097</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C097094">BAP2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147682-31-3</RegistryNumber>
<NameOfSubstance UI="C066958">NPR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14757244</ArticleId>
<ArticleId IdType="pii">S0378109703009182</ArticleId>
<ArticleId IdType="doi">10.1016/S0378-1097(03)00918-2</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001899 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001899 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:14757244
   |texte=   The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:14757244" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020