Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.

Identifieur interne : 001122 ( Main/Corpus ); précédent : 001121; suivant : 001123

Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.

Auteurs : Jae-Hee Jeong ; Kwang-Hoon Lee ; Young-Mi Kim ; Do-Hyung Kim ; Byung-Ha Oh ; Yeon-Gil Kim

Source :

RBID : pubmed:22807443

English descriptors

Abstract

The heterodimeric Rag GTPases consisting of RagA (or RagB) and RagC (or RagD) are the key regulator activating the target of rapamycin complex 1 (TORC1) in response to the level of amino acids. The heterodimer between GTP-loaded RagA/B and GDP-loaded RagC/D is the most active form that binds Raptor and leads to the activation of TORC1. Here, we present the crystal structure of Gtr1p(GTP)-Gtr2p(GDP), the active yeast Rag GTPase heterodimer. The structure reveals that GTP-to-GDP conversion on Gtr2p results in a large conformational transition of this subunit, including a large scale rearrangement of a long segment whose corresponding region in RagA is involved in binding to Raptor. In addition, the two GTPase domains of the heterodimer are brought to contact with each other, but without causing any conformational change of the Gtr1p subunit. These features explain how the nucleotide-bound statuses of the two GTPases subunits switch the Raptor binding affinity on and off.

DOI: 10.1074/jbc.C112.384420
PubMed: 22807443
PubMed Central: PMC3436135

Links to Exploration step

pubmed:22807443

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.</title>
<author>
<name sortKey="Jeong, Jae Hee" sort="Jeong, Jae Hee" uniqKey="Jeong J" first="Jae-Hee" last="Jeong">Jae-Hee Jeong</name>
<affiliation>
<nlm:affiliation>Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Kwang Hoon" sort="Lee, Kwang Hoon" uniqKey="Lee K" first="Kwang-Hoon" last="Lee">Kwang-Hoon Lee</name>
</author>
<author>
<name sortKey="Kim, Young Mi" sort="Kim, Young Mi" uniqKey="Kim Y" first="Young-Mi" last="Kim">Young-Mi Kim</name>
</author>
<author>
<name sortKey="Kim, Do Hyung" sort="Kim, Do Hyung" uniqKey="Kim D" first="Do-Hyung" last="Kim">Do-Hyung Kim</name>
</author>
<author>
<name sortKey="Oh, Byung Ha" sort="Oh, Byung Ha" uniqKey="Oh B" first="Byung-Ha" last="Oh">Byung-Ha Oh</name>
</author>
<author>
<name sortKey="Kim, Yeon Gil" sort="Kim, Yeon Gil" uniqKey="Kim Y" first="Yeon-Gil" last="Kim">Yeon-Gil Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22807443</idno>
<idno type="pmid">22807443</idno>
<idno type="doi">10.1074/jbc.C112.384420</idno>
<idno type="pmc">PMC3436135</idno>
<idno type="wicri:Area/Main/Corpus">001122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.</title>
<author>
<name sortKey="Jeong, Jae Hee" sort="Jeong, Jae Hee" uniqKey="Jeong J" first="Jae-Hee" last="Jeong">Jae-Hee Jeong</name>
<affiliation>
<nlm:affiliation>Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Kwang Hoon" sort="Lee, Kwang Hoon" uniqKey="Lee K" first="Kwang-Hoon" last="Lee">Kwang-Hoon Lee</name>
</author>
<author>
<name sortKey="Kim, Young Mi" sort="Kim, Young Mi" uniqKey="Kim Y" first="Young-Mi" last="Kim">Young-Mi Kim</name>
</author>
<author>
<name sortKey="Kim, Do Hyung" sort="Kim, Do Hyung" uniqKey="Kim D" first="Do-Hyung" last="Kim">Do-Hyung Kim</name>
</author>
<author>
<name sortKey="Oh, Byung Ha" sort="Oh, Byung Ha" uniqKey="Oh B" first="Byung-Ha" last="Oh">Byung-Ha Oh</name>
</author>
<author>
<name sortKey="Kim, Yeon Gil" sort="Kim, Yeon Gil" uniqKey="Kim Y" first="Yeon-Gil" last="Kim">Yeon-Gil Kim</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallography, X-Ray (MeSH)</term>
<term>Guanosine Diphosphate (chemistry)</term>
<term>Guanosine Diphosphate (genetics)</term>
<term>Guanosine Diphosphate (metabolism)</term>
<term>Guanosine Triphosphate (chemistry)</term>
<term>Guanosine Triphosphate (genetics)</term>
<term>Guanosine Triphosphate (metabolism)</term>
<term>Monomeric GTP-Binding Proteins (chemistry)</term>
<term>Monomeric GTP-Binding Proteins (genetics)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>Multienzyme Complexes (genetics)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Guanosine Diphosphate</term>
<term>Guanosine Triphosphate</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Multienzyme Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Guanosine Diphosphate</term>
<term>Guanosine Triphosphate</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Multienzyme Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Guanosine Diphosphate</term>
<term>Guanosine Triphosphate</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Multienzyme Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Protein Binding</term>
<term>Protein Structure, Quaternary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The heterodimeric Rag GTPases consisting of RagA (or RagB) and RagC (or RagD) are the key regulator activating the target of rapamycin complex 1 (TORC1) in response to the level of amino acids. The heterodimer between GTP-loaded RagA/B and GDP-loaded RagC/D is the most active form that binds Raptor and leads to the activation of TORC1. Here, we present the crystal structure of Gtr1p(GTP)-Gtr2p(GDP), the active yeast Rag GTPase heterodimer. The structure reveals that GTP-to-GDP conversion on Gtr2p results in a large conformational transition of this subunit, including a large scale rearrangement of a long segment whose corresponding region in RagA is involved in binding to Raptor. In addition, the two GTPase domains of the heterodimer are brought to contact with each other, but without causing any conformational change of the Gtr1p subunit. These features explain how the nucleotide-bound statuses of the two GTPases subunits switch the Raptor binding affinity on and off.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22807443</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>287</Volume>
<Issue>35</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.</ArticleTitle>
<Pagination>
<MedlinePgn>29648-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.C112.384420</ELocationID>
<Abstract>
<AbstractText>The heterodimeric Rag GTPases consisting of RagA (or RagB) and RagC (or RagD) are the key regulator activating the target of rapamycin complex 1 (TORC1) in response to the level of amino acids. The heterodimer between GTP-loaded RagA/B and GDP-loaded RagC/D is the most active form that binds Raptor and leads to the activation of TORC1. Here, we present the crystal structure of Gtr1p(GTP)-Gtr2p(GDP), the active yeast Rag GTPase heterodimer. The structure reveals that GTP-to-GDP conversion on Gtr2p results in a large conformational transition of this subunit, including a large scale rearrangement of a long segment whose corresponding region in RagA is involved in binding to Raptor. In addition, the two GTPase domains of the heterodimer are brought to contact with each other, but without causing any conformational change of the Gtr1p subunit. These features explain how the nucleotide-bound statuses of the two GTPases subunits switch the Raptor binding affinity on and off.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jeong</LastName>
<ForeName>Jae-Hee</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Kwang-Hoon</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Young-Mi</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Do-Hyung</ForeName>
<Initials>DH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Byung-Ha</ForeName>
<Initials>BH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yeon-Gil</ForeName>
<Initials>YG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4ARZ</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R56 DK072004</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK072004</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK083474</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 DK083474</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK072004</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM097057</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121263">GTR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121262">Gtr1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>146-91-8</RegistryNumber>
<NameOfSubstance UI="D006153">Guanosine Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006153" MajorTopicYN="N">Guanosine Diphosphate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
<ArticleId IdType="pii">C112.384420</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.C112.384420</ArticleId>
<ArticleId IdType="pmc">PMC3436135</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2001 Mar;2(3):234-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Aug 15;25(16):1668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Nov 19;30(46):11181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 May 5;268(13):9410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Sep 2;265(5177):1405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8073283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 1;270(48):28982-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 23;271(34):20470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Oct 16;95(2):237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Apr 15;7(4):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10196122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2009 Jun;65(Pt 6):582-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Jun;19(6):260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19419870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7246-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22807443
   |texte=   Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22807443" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020